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Abstract

We investigate a supply chain selling a mass customization (MC) product to the market.

A decision model is built when the degree of customization, price and lead time of the MC

product affect market demand. The optimal decisions of the MC supply chain are analyzed in

non-cooperative decision-making and cooperative decision-making. Moreover, the sensitivity

analysis of optimal customer order decoupling point (CODP) position is conducted. Our

results show that compared with non-cooperative decision-making, the optimal CODP moves

to a later position in cooperative decision-making. The relationships between the optimal

CODP position and the price sensitivity coefficient are different in two different scenarios.

The impact of the customization sensitivity coefficient on the optimal CODP position is

opposite to the impact of the lead time sensitivity coefficient on the optimal CODP position.

When the production cost coefficient or investment coefficient increases, the optimal CODP

moves to an earlier position.

Keywords: Mass customization, MC supply chain, customer order decoupling point,

customized demand.

1. Introduction

With the increasing diversity of customer demand, enterprises in different industries,

such as fashion apparel, automobiles, and computer manufacturing carry out customized

services to meet individualized requirements of customers. This makes the method of

mass production gradually unable to adapt to customer demand. Enterprises are turning

more to small batch production, or customized production. Mass Customization (MC)

production has become a popular production method for enterprises in today’s compet-

itive market. For example, in automobiles, various brands such as Ford and BMW are

implementing MC programs for customers to choose different colors as well as materials

for interior design (see Choi et al. [2]).

In this study, we analytically explore the optimal decisions of an MC supply chain

under customized demand. Thus, our research relates to studies on mass customization

and CODP in supply chains.
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Pine and Davis [12] introduced the idea of mass customization (MC) that is the

capability to provide customized products at a relatively low cost. Alford et al. [1] pro-

posed that mass customization is a production mode that customizes any quantity of

products for customers with the cost of mass production. MC is realized through the

reorganization of product structure and manufacturing process, using modern informa-

tion technology and flexible technology. Da Silveira et al. [3] and Hart [5] also suggested

that mass customization is a production mode that customizes any quantity of products

for customers based on the cost and speed of large-scale production, combined with the

actual capabilities of enterprises.

With the advance of technologies, MC is a timely business practice (see Choi et

al. [2], Heradio et al. [6] and Lai et al. [7]). The MC production mode is a combination

of make-to-stock (MTS) and make-to-order (MTO). The boundary point for make-to-

stock and make-to-order is called customer order decoupling point (CODP). In terms of

the CODP, mass customization production can be divided into two kinds of production:

mass production with a lower unit cost and customized production with a higher unit

cost. The choice of CODP location is a key issue in mass customization production

(see Liu et al. [11] and Zhou et al. [17]). Lee and Tang [8] analyzed the advantages

and disadvantages of delaying the point of product differentiation. The CODP does

not move the later the better. Garg and Tang [4] studied the problem of delays in

multiple product differentiation points, and pointed out the conditions when one type of

delayed differentiation is better than the other. Wang et al. [15] discussed the production

scheduling system for multi-CODP in the context of mass customization.

Semini et al. [13] analyzed the ship design and construction industry from the per-

spective of the customer order decoupling point. They concluded that upstream CODP

positions in the supply chain imply high levels of flexibility and customization, while

downstream positions allow short lead times and lower prices. van Donk and van Doorne

[14] explored the impact of the location of the CODP on supply chain integration. The

results showed a clear relationship between supply chain integration and the location of

the CODP. Zhou et al. [16] developed a two-stage tandem queuing network to derive the

CODP position and base-stock level. Li et al. [9] explored the MC supply chain decisions

with the consideration of the influences of return policy, product lead time and price on

the demand. Liu et al. [10] introduced the concepts of mass customization and CODP

into the field of logistics service to solve the problem of CODP.

The above studies have examined the influences of product price and lead time on

market demand (see Li et al. [9] and Zhou et al. [17]). But they have not considered the

impact of the degree of customization. This is the major difference between this paper

and the existing studies. Market demand will be affected by factors including product

price, lead time, and the degree of customization, which should be included in a supply

chain decision model.

Therefore, this paper explores the optimal decisions of an MC supply chain when

market demand is affected by the degree of product customization, price, and lead time.

In non-cooperative decision-making, each company in a supply chain makes the optimal

decision from its own perspective. In cooperative decision-making, companies in a supply
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chain make optimal decisions from an overall perspective. We compare the optimal deci-

sions of non-cooperative decision-making and cooperative decision-making. In addition,

the sensitivity analysis of the optimal CODP position is performed.

2. Problem and Assumptions

A mass customization (MC) product is produced in a supply chain and sold to the

market. The MC supply chain includes a supplier and a manufacturer. The supplier

provides standard components to the manufacturer with a Make-to-Stock (MTS) pro-

duction mode. The manufacturer assembles components into an MC product to meet

the requirements of customers. After receiving the customer’s order, the manufacturer

uses a Make-To-Order (MTO) production mode. The MC supply chain combines two

production modes of mass production with a lower unit production cost and customized

production with a higher unit production cost. The CODP is the point that separates

from mass production and customized production in the MC supply chain. The CODP

is located between the supplier and the manufacturer in our model, which is represented

by the triangle in Figure 1.

Supplier Manufacturer Customer
w p

z CODP

MTS MTO

0 1

Figure 1: MC Supply Chain Model.

The main variables are listed in Table 1.

The CODP position is represented by 0 ≤ z ≤ 1. It means that the procedure from

0 to z is the mass process. The customized process begins from z. A larger z indicates

that the supply chain has a longer mass process. The supplier offers components to the

manufacturer at the price of w. The manufacturer assembles the components into a

finished product (MC product) and sells it at price p. After a customer places an order,

the product is received after time t.

The degree of product customization is represented by 1 − z. A larger z means a

lower degree of customization. z = 1 indicates that the product is fully processed in an

MTS mode. z = 0 means that the product is completely processed in an MTO mode.

Assume that the product lead time t is linearly and negatively correlated with CODP

position z. t = t0(1− z), where t0 > 0 is the base lead time of the MC product.

The production cost for the components at the supplier is cs. Assume that cs =

η1z, where η1 > 0 is the production cost coefficient for the components. In order to

improve the mass process, the supplier invests Fs in research and development (R&D).

Fs = η2z
2/2 + η0, where η0 is the base investment and η2 is the investment coefficient

for the mass process. As the mass process becomes longer, both the production cost and

investment of the supplier increase.
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Table 1: List of main variables.

Variable Description

z The CODP position.

w The price of the components per unit MC product.

p The selling price of the MC product.

D The market demand for the MC product.

a The market capacity of the MC product.

t The lead time of the MC product.

t0 The base lead time of the MC product.

k price sensitivity coefficient of demand.

θ lead time sensitivity coefficient of demand.

b customization sensitivity coefficient of demand.

Fs The investment for the mass process.

η1 The production cost coefficient for the components.

η0 The base investment for the mass process.

η2 The investment coefficient for the mass process.

cs The production cost for the components per unit MC product.

cM The customization cost per unit MC product.

c0 The base customization cost of the MC product.

The customization cost for the MC product at the manufacturer is cM . Assume

that cM = c0(1 − z), where c0 > 0 is the base customization cost. When the degree of

customization is reduced, the customization cost cM decreases. Assume c0 > η1, which

means that the customization cost of one unit product is higher than its cost of mass

production.

The market demand for the MC product is D. D = a − kp − θt+ b(1 − z), where

a, k, θ, b > 0. a is the market capacity of the MC product, mainly affected by factors

such as product quality and brand image. k is the price sensitivity coefficient of demand.

θ is the lead time sensitivity coefficient of demand. b is the customization sensitivity

coefficient of demand. The market demand for the MC product will increase, if the

degree of customization of the product increases. The market demand will also increase,

if the selling price or the lead time decreases.

Assume a− kc0 − θt0 + b > 0, which indicates that the market demand for the MC

product is greater than 0 when the product is fully customized. Assume a − kη1 > 0,

which indicates that the demand for the MC product is also greater than 0 when the

product is completely mass produced, or processed in an MTS mode.

The profit of the supplier πS is given as follows:

πS = D(w − cs)− Fs, (2.1)

where Dw, Dcs and Fs are the supplier’s income, production cost and investment, re-

spectively.
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The profit of the manufacturer πM is given as follows:

πM = D(p −w − cM ), (2.2)

where Dp, Dw and DcM are the manufacturer’s income, purchase cost and customization

cost, respectively.

Based on the above assumptions, equation (2.1) and equation (2.2) can be expressed

as:

πS = [a− kp− θt0(1− z) + b(1− z)](w − cs)− (η2z
2/2 + η0), (2.3)

πM = [a− kp− θt0(1− z) + b(1− z)](p −w − c0(1− z)). (2.4)

3. Optimal Decisions of MC Supply Chain in Non-cooperative Decision-

making

In non-cooperative decision-making, each company in the MC supply chain makes

the optimal decisions from the perspective of maximizing its own profit. Assume that the

supplier acts as the Stackelberg leader in our model. The supplier determines the CODP

position (z) and the price of components (w). The manufacturer acts as a follower, which

decides the selling price (p) of the MC product.

The supplier’s optimal decision is shown as below:

max : πS(z, w) = [a− kp− θt0(1− z) + b(1− z)](w − cs)− (η2z
2/2 + η0), (3.1)

s.t. 0 ≤ z ≤ 1, w > 0.

The manufacturer’s optimal decision is shown as below:

max :πM (p) = [a− kp− θt0(1 − z) + b(1− z)](p − w − c0(1− z)), (3.2)

s.t. p > 0.

An inverse reasoning method is used to solve the Stackelberg game model. First, the

optimal selling price p∗ is solved for a given price of components w and CODP position

z. Then, the optimal CODP position z∗ and the price of components w∗
are solved based

on the optimal selling price p∗.

From equation (3.2) we can get
∂2πM (p)

∂p2
= −2k < 0. Therefore, πM (p) is a concave

function with respect to p, and has a maximum value.

Solving
∂πM (p)

∂p
= 0, we can get the optimal selling price:

p∗NC = [kw + (θt0 − kc0 − b)z + a− θt0 + kc0 + b]/(2k). (3.3)

Theorem 1. When 4kη2 > (θt0+ kc0 − kη1− b)2, the supplier’s profit function πS(z, w)

is a concave function with respect to z and w, which has a maximum value.
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Proof. The Hessian matrix of the supplier’s profit function H(πs) is the following:

H(πs) =









∂2πs
∂w2

∂2πs
∂w∂z

∂2πs
∂z∂w

∂2πs
∂z2









=

[

−k (θt0 + kc0 + kη1 − b)/2

(θt0 + kc0 + kη1 − b)/2 −η1(θt0+kc0−b)−η2

]

. (3.4)

The determinant of H(πs) is

|H(πs)| = kη2 −
1

4
(θt0 − b+ kc0 − kη1)

2. (3.5)

When 4kη2 > (θt0 + kc0 − kη1 − b)2, |H(πs)| > 0. As −k < 0 and |H(πs)| > 0, the

Hessian matrix is negative. Therefore, the supplier’s profit function πS(z, w) is a concave

function with respect to z and w, and has a maximum value. Theorem 1 holds.

Substitute p∗NC into equation (3.1). Solving
∂πs(z, w)

∂z
= 0 and

∂πs(z, w)

∂w
= 0, we

can get the optimal CODP position and optimal price of components:

z∗NC=(a+b−θt0−kc0)(θt0+kc0−kη1−b)/[4kη2−(θt0+kc0−kη1−b)2], (3.6)

w∗

NC=(a+b−θt0−kc0)[2η2+η1(θt0+kc0−kη1−b)]/[4kη2−(θt0+kc0−kη1−b)2]. (3.7)

4. Optimal Decisions of MC Supply Chain in Cooperative Decision-making

In cooperative decision-making, supply chain companies form a virtual enterprise,

and optimal decisions are made to maximize the overall profit of the virtual enterprise.

The overall profit of the MC supply chain is expressed by π, and π = πS + πM .

The optimal decisions of the MC supply chain are shown as below:

max : π(z, p)=[a−kp−θt0(1−z)+b(1−z)](p−η1x−c0(1−z))−(η2z
2/2+η0), (4.1)

s.t. 0 ≤ z ≤ 1, p > 0.

Theorem 2. When 2kη2 > (θt0 + kc0 − kη1 − b)2, The overall profit function of the MC

supply chain π(z, p) is a concave function with respect to z and p, which has a maximum

value.

Proof. The Hessian matrix of the overall profit function H(π) is the following:

H(π) =









∂2π

∂p2
∂2π

∂p∂z

∂2π

∂z∂p

∂2π

∂z2









=

[

−2k θt0 − b− k(c0 − η1)

θt0 − b− k(c0 − η1) 2(θt0 − b)(c0 − η1)− η2

]

. (4.2)

The determinant of H(π) is

|H(π)| = 2kη2 − (θt0 + kc0 − kη1 − b)2. (4.3)
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When 2kη2 > (θt0+kc0−kη1−b)2, |H(π)| > 0. As −2k < 0 and |H(π)| > 0, the Hessian

matrix is negative. Therefore, the profit function of the supply chain is a concave function

with respect to z and p, which has a maximum value. Theorem 2 holds.

Solving
∂π(z, p)

∂z
= 0 and

∂π(z, p)

∂p
= 0, we can get the optimal CODP position and

optimal selling price:

z∗c =
(a+b−θt0−kc0)(θt0+kc0−kη1−b)

2kη2−(θt0+kc0−kη1−b)2
, (4.4)

p∗c=
η2(a+b−θt0−kc0)−((a+b)(c0−η1)+θt0η1)(θt0+kc0−kη1−b)

2kη2−(θt0+kc0−kη1−b)2
. (4.5)

Corollary 1. The optimal CODP of the MC supply chain in cooperative decision-making

moves to a later position than that in non-cooperative decision-making.

Proof. It can be inferred from equations (3.6) and (4.4) that z∗c > z∗NC . In cooper-

ative decision-making, the CODP will be moved to a later position than that in non-

cooperative decision-making. Thus, corollary 1 holds. Corollary 1 indicates that the

mass process will increase, or the degree of product customization will be reduced in

cooperative decision-making.

5. Sensitivity Analysis of the Optimal CODP Position

Equation (3.6) and Equation (4.4) show that the expressions of the optimal CODP

positions are similar for non-cooperative decision-making and cooperative decision-making.

Thus, the sensitivity analyses of the two positions are similar. The following is a sensi-

tivity analysis of the optimal CODP position for the non-cooperative decision-making.

In the numerical analysis, the parameters are set as follows: a = 200, k = 0.3, θ = 60,

t0 = 2, b = 20, c0 = 2, η1 = 60, η0 = 1000, η2 = 50000. Some of the parameters use the

data from Li et al. [9], which meet the assumptions in this study.

5.1. Impact of price sensitivity coefficient

Corollary 2. Scenario 1. When

4η2(k
2c0(c0 − η1) + (a+ b− θt0)(θt0 − b)) ≥ (θt0 + kc0 − kη1 − b)2(ac0 − η1(a+ b− θt0)),

the optimal CODP position becomes smaller with the increase of the price sensitivity

coefficient.

Scenario 2. When

4η2(k
2c0(c0 − η1) + (a+ b− θt0)(θt0 − b)) < (θt0 + kc0 − kη1 − b)2(ac0 − η1(a+ b− θt0)),

the optimal CODP position becomes larger with the increase of the price sensitivity coef-

ficient.
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Proof. From equation (3.6), we can get

∂z∗

∂k
=

4η2(k
2c0(c0−η1)+(a+b−θt0)(θt0−b))−(θt0+kc0−kη1−b)2(ac0−η1(a+b−θt0))

−[4kη2−(θt0+kc0−kη1−b)2]2
,

(5.1)

The relationship between the optimal CODP position z∗ and the price sensitivity

coefficient k depends on which of 4η2(k
2c0(c0 − η1) + (a + b− θt0)(θt0 − b)) and (θt0 +

kc0 − kη1 − b)2(ac0 − η1(a+ b− θt0)) is larger. According to equation (5.1), Corollary 2

holds.
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Figure 2: Impact of price sensitivity coefficient on CODP position.

Figure 2 shows the influence of the price sensitivity coefficient on the optimal CODP

position in scenario 1 and scenario 2. In scenario 1, z∗ decreases if the price sensitivity

coefficient increases. It means the degree of customization of the MC product will in-

crease. In scenario 2, the degree of customization of the MC product will be reduced if

the price sensitivity coefficient increases.

5.2. Impact of lead time sensitivity coefficient

Corollary 3. Case I. When (θt0+kc0−kη1−b)2(a−kη1) ≥ 4kη2(2θt0+2kc0−a−2b−kη1),

the optimal CODP position becomes larger with the increase of the lead time sensitivity

coefficient.

Case II. When (θt0 + kc0 − kη1 − b)2(a − kη1) < 4kη2(2θt0 + 2kc0 − a − 2b − kη1), the

optimal CODP position becomes smaller with the increase of the lead time sensitivity

coefficient.

Proof. From equation (3.6), we can get

∂z∗

∂θ
=

(θt0 + kc0 − kη1 − b)2(a− kη1) + 4kη2(a+ 2b+ kη1 − 2θt0 − 2kc0)

[4kη2−(θt0+kc0−kη1−b)2]2
t0, (5.2)
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The relationship between the optimal CODP position z∗ and θ in the MC supply

chain depends on which of (θt0+kc0−kη1−b)2(a−kη1) and 4kη2(2θt0+2kc0−a−2b−kη1)

is larger. According to equation (5.2), Corollary 3 holds.
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Figure 3: Impact of lead time sensitivity coefficient on CODP position.

Figure 3 shows the influence of the lead time sensitivity coefficient on the optimal

CODP position when a = 280 and a = 200. When the market capacity a is large and

Case I is satisfied, z∗ becomes larger if the lead time sensitivity coefficient θ increases.

It means that the supply chain will shorten the lead time of the MC product to increase

the sales. When the market capacity a is small and Case II is satisfied, z∗ becomes

smaller if θ increases. It means that the supply chain will increase the lead time of the

MC product.

5.3. Impact of customization sensitivity coefficient

Corollary 4. Case I. When (θt0+kc0−kη1− b)2(a−kη1) ≥ 4kη2(2θt0+2kc0−a−2b−

kη1), the optimal CODP position becomes smaller with the increase of the customization

sensitivity coefficient.

Case II. When (θt0 + kc0 − kη1 − b)2(a − kη1) < 4kη2(2θt0 + 2kc0 − a − 2b − kη1), the

optimal CODP position becomes larger with the increase of the customization sensitivity

coefficient.

Proof. From equation (3.6), we can get

∂z∗

∂b
=−

(θt0 + kc0 − kη1 − b)2(a− kη1) + 4kη2(a+ 2b+ kη1 − 2θt0 − 2kc0)

[4kη2−(θt0+kc0−kη1−b)2]2
. (5.3)

Based on equation (5.3), Corollary 4 holds. It can be inferred from equations (5.2)

and (5.3) that
∂z∗

∂b
= −

∂z∗

∂θ

/

t0. This indicates that the impact of the customization
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sensitivity coefficient on the optimal CODP position is opposite to the impact of the lead

time sensitivity coefficient on the optimal CODP position.

5.4. Impact of production cost coefficient and investment coefficient

Corollary 5. As the production cost coefficient η1 or investment coefficient η2 increases,

the optimal CODP position z∗ becomes smaller.

Proof. From equation (3.6), we can get

∂z∗

∂η1
=
−k(a+ b− θt0 − kc0)(4kη2 + (θt0+kc0−kη1−b)2)

[4kη2−(θt0+kc0−kη1−b)2]2
. (5.4)

In equation (5.4), k > 0 and a+ b− θt0 − kc0 > 0, so
∂z∗

∂η1
< 0. It indicates that z∗

decreases when the cost factor η1 increases.

The numerator and denominator of formula (3.6) are both greater than 0. When η2
increases, the denominator of equation (3.6) becomes larger. Therefore, z∗ decreases in

η2. Corollary 5 holds.

Figure 4 and Figure 5 show the influences of the production cost coefficient and

investment coefficient on the optimal CODP position. When η1 or η2 increases, the

supply chain will reduce the mass process. Thus, the customized process will increase.
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Figure 4: Impact of production cost coefficient on CODP position.
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6. Conclusions and Management Insights

6.1. Conclusions

This paper studies the optimal decisions of an MC supply chain under personalized

demand. A supply chain optimization model is constructed that considers the influences

of the degree of customization, price, and lead time of an MC product on market demand.

The optimal CODP position and pricing decisions of the MC supply chain are obtained

in non-cooperative decision-making and cooperative decision-making. In addition, the

sensitivity analysis of the optimal CODP position is conducted.

Our results show that the optimal CODP of the MC supply chain in cooperative

decision-making moves to a later position than that in non-cooperative decision-making.

The sensitivity analysis shows that the CODP moves to an earlier position as the price

sensitivity coefficient increases in scenario 1. The CODP moves to a later position

with the increase of the price sensitivity coefficient in scenario 2. When the market

capacity is large, the CODP moves later with the increase of the lead time sensitivity

coefficient. When the market capacity is small, the CODP moves earlier as the lead time

sensitivity coefficient increases. The impact of the customization sensitivity coefficient

on the optimal CODP position is opposite to the impact of the lead time sensitivity

coefficient on the optimal CODP position. When the production cost coefficient or

investment coefficient increases, the optimal CODP moves earlier.

6.2. Management insights

From a practical management point of view, the conclusions in this paper can be used

to improve the MC supply chain profitability. First, product price, lead time, the degree

of customization and the production cost influence the CODP. These critical factors

should be taken into account when deciding the optimal CODP. Second, our model can
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be used to calculate the optimal CODP. As the level of cooperation among supply chain

companies increases, the optimal CODP moves to a later position. Third, the relevant

conclusions can be used to adjust the CODP. For example, if a supplier finds that its

production cost increases, it should move the CODP to an earlier position. When the

market capacity is large, the optimal CODP should be moved to a later position if the

lead time sensitivity coefficient increases.

In this study, it is assumed that the lead time, the production cost for the com-

ponents, and the customization cost for the MC product are all linearly related to the

CODP position. In further research, the optimal decisions can be considered when the

lead time and related cost are nonlinearly related to the CODP position so that the

guidance significance for practice could be increased.
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