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Abstract

The maximum likelihood estimation method and the Bayesian estimation method using

Metropolis-Hastings Markov chain Monte Carlo (M-H MCMC) approach are investigated

for estimating the parameters in the accelerated life test (ALT) model when the quality

characteristic of product follows a double-truncated generalized half normal (DTGHN) dis-

tribution. To overcome the complexity by applying Fisher information matrix with the

maximum likelihood estimates (MLEs) to obtaining the confidence intervals (CIs) of distri-

bution quantiles, a bootstrap percentile method is used to obtain the CIs of distribution

quantiles. The estimation performance of the proposed methods is evaluated by means of

Monte Carlo simulations. Simulation results show that the proposed M-H MCMC method

with non-informative prior distributions outperforms the maximum likelihood estimation

method to obtain reliable MLEs of the ALT model parameters for the DTGHN distribution.

An example about the stress-rupture life of Kevlar 49/epoxy is used to demonstrate the ap-

plications of the proposed methods and investigate the coverage probability of the bootstrap

percentile CI for the distribution median at the normal-use condition.

Keywords: Bootstrap percentile method, maximum likelihood estimation, mean squared

error, Metropolis-Hastings Markov chain Monte Carlo approach, Newton-

Raphson method.

1. Introduction

When brittle martials, for example, the glasses, ceramics or some polymers, suffer

sufficient stress in certain environments, the quality of materials gradually weak over

time due to fracture, see Powell [16] and Wachtman [18]. Fatigue is a major problem for

material weakness. Normally, the fatigue crack growth is highly related to the stress or

cyclic load. Cooray and Ananda [4] are the pioneers to propose a generalized half normal

(GHN) distribution to characterize the static fatigue crack growth under constant stress

testing. They derived the static fatigue model and presented its properties, functional

characteristics, maximum likelihood estimation process. Moreover, they studied the

coverage probabilities of the maximum likelihood parameter estimation.
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Pewsey [14] proposed inferential techniques for the GHN distribution, which was

obtained via a line transformation from the GHN. Pewsey [15] developed bias correction

method to construct bias-corrected CIs for the GHN distribution parameters. Cordeiro

et al. [5] proposed the Kumaraswamy GHN distribution for modeling skewed positive

data. The Kumaraswamy GHN distribution includes the half normal distribution and

the GHN distribution, which was proposed by Cooray and Ananda [4], as special cases.

They presented the explicit formulas of the probability density function (PDF), mo-

ments, generating and quantile functions, mean deviations and the moments of the order

statistics. They also investigated the maximum likelihood estimation for the parameters

and derive the expected information matrix. Olmos et al. [12] extended the GHN dis-

tribution proposed by Cooray and Ananda [4] and proposed a new GHN distribution by

considering the quotient of two random variables, in which the one in the numerator fol-

lows a GHN distribution and the one in the denominator follows a power of the uniform

distribution on (0,1), respectively. They provided the explicit expressions of the PDF

of the new GHN distribution, and studied some properties and the moments of the new

GHN distribution. By the way, they discussed the stochastic representation for the new

model, and studied the maximum likelihood estimation and moment estimation methods

for the new GHN distribution. Ahmadi et al. [1] studied the estimation method for ob-

taining the MLEs of the parameters in the GHN distribution based on progressive type

II censoring samples. They also proposed methods to obtain Bayes estimates through

using different symmetric and asymmetric loss functions such as squared error, LINEX

or general entropy.

Nogales and Pérez [11] proposed unbiased estimators for the GHN distribution pa-

rameters, and they have shown that their unbiased estimators outperform some existing

maximum likelihood estimators. Cordeiro et al. [6] proposed a new GHN distribution,

named odd log-logistic GHN distribution for describing fatigue lifetime data. They also

studied the maximum likelihood estimation method for the odd log-logistic GHN dis-

tribution. Wang [21] studied the maximum likelihood estimation and developed bias

correction methods for obtaining reliable estimates of the GHN distribution parameters.

He also studied the methods to obtain the unweighted and weighted least squares esti-

mates for the GNH distribution parameters. Altun et al. [2] introduced a new extension

of the GNH distribution and they assessed the performance of the maximum likelihood

estimators of the model parameter through using simulations. Pescim et al. [13] proposed

the beta GNH distribution, which is another generalized version of the half normal dis-

tribution.

He et al. [7] proposed a data-driven method for capacity fast prediction and estimat-

ing the residual useful life estimation for high-capacity valve regulated lead acid batteries.

In their study, the ALT method is used to save test time. Wang et al. [20] studied simple

and efficient methods to estimate the coefficients of the ALT model. They assumed that

both scale and shape parameters of the Weibull distribution vary along with the stress

levels of stress variable. Then they proposed maximum likelihood estimation methods

to obtain the MLEs of model parameters. Moreover, they studied methods to reduce

the estimation bias when estimating the shape parameter. The ALT method have been
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widely studied in the literature. Lawless [8] and Nelson [10] provided comprehensive

discussions for using the censoring and ALT methods in life testing applications. Wang

and Kececioglu [19] used Weibull log-linear model to fit ALT data and they proposed

inference methods for parameter estimation. Srivastava and Savita [17] proposed an ALT

plan for two-component parallel systems when the ramp-stress loading is used for masked

data. Meeker and Escobar [9] provided comprehensive discussions and summary about

using the censoring, ALT and accelerated degradation test methods in recent life testing

applications. A list of the full names of technique terms, which are used in this study, is

given below:

The rest of this paper is organized as follows: In Section 2, the motivation is given

to deliver the three goals of this study. The DTGHN distribution is addressed in Section

3 and the statistical model of ALT for the DTGHN distribution is obtained. The max-

imum likelihood estimation procedure is derived. Moreover, the Bayes estimators via

using M-H MCMC method with non-informative prior distributions for the generalized

ALT model parameters are analytically obtained. The bootstrap percentile method is

used to find the CI of the quality parameter based on ALT samples. An algorithm is given

to implement the proposed bootstrap percentile method. In Section 4, a numerical study

is conducted with the Monte Carlo simulations to evaluate the estimation performance

of the maximum likelihood estimators and Bayes estimators. Then a reliable estimation

procedure is recommended. The sensitivity of the proposed M-H MCMC procedure for

model misspecification is also studied. An example regarding the stress-rupture life of

Kevlar 49/epoxy is used to demonstrate the applications of the proposed methods in

Section 5, and the bootstrap percentile CI of the median lifetime of the DTGHN distri-

bution at the normal-use condition is found and the coverage probability is investigated.

Some conclusions are given in Section 6.

Technique term Full name

ALT accelerated life test

CI confidence interval

DTGHN double-truncated generalized half normal

GHN generalized half normal

M-H MCMC Metropolis-Hastings Markov chain Monte Carlo

MLE maximum likelihood estimate

PDF probability density function

QN quasi-Newton algorithm

SN skew-normal

GSN generalized skew-normal

TGSN truncated generalized skew-normal
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2. Motivation

The ALT method contains benefit for saving testing time, and the GHN distribution

is a good distribution for describing the fatigue crack growth of materials. In this study,

three goals are investigated for the inference methods on the ALT model parameters

when the fatigue crack growth of materials follows a GHN distribution:

(1) The GHN is a good candidate distribution to characterize the fatigue crack growth

of materials. It is important to establish a generalized ALT inference process for a

generalized distribution class, which contains the GHN distribution as special case.

Because of the highly reliable property of today’s devices, we need a more complicate

ALT model to characterize the relationships between the distribution parameters and

the stress. In this study, two underlying distribution parameters are allowed to link

with the stress levels. The proposed ALT model contains the widely used ALT model,

which only links the scale parameter to the stress (see Nelson [10] and Meeker and

Escobar [9]), as special case. The DTGHN distribution is a generalized family that

includes the lower-truncated GHN, upper-truncated GHN and GHN distributions as

special cases. Hence, the DTGHN distribution is used as the underlying distribution

to characterize the fatigue crack growth of materials to establish the inference process

for the generalized ALT model. The proposed methods not only can be applied to

implement reliability assessments for the fatigue crack growth of materials, the pro-

posed methods can also be applied to other related engineering applications, in which

the DTGHN distribution is used to be the underlying distribution to characterize the

quality characteristic of products, for saving test time and cost.

(2) To obtain reliable estimates for the generalized ALT model that mentioned in Goal 1,

a maximum likelihood estimation procedure is analytically presented. We use quasi-

Newton algorithm to implement the Newton-Raphson method to obtain the MLEs

of the generalized ALT model parameters. In order to overcoming the divergence

problem during searching the MLEs in this study, a Bayesian estimation procedure

is also developed to obtain the Bayes estimators of the model parameters through

using non-informative prior distributions. The obtained Bayes estimates are close

to the MLEs of the model parameters. Because of no explicit expressions for the

Bayes estimators of the parameters, the Bayes estimates are searched via using an

M-H MCMC method. The purpose of the second goal is to find a simple and sta-

ble parameter estimation procedure to obtain reliable estimates of the ALT model

parameters for the DTGHN distribution.

(3) We would like to provide a simple interval inference method for estimating the quality

parameter based on ALT samples. Sampling error has impact on the quality of point

estimates. Hence a CI estimation method is needed to investigate the impact of the

sampling error on the point estimate. We proposed a bootstrap procedure to obtain

the CIs of the ALT model parameters. The proposed bootstrap procedure is easy to

implement.
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3. Statistical Model and Estimation Method

In this section, we investigate the DTGHN distribution and the ALT model for

the DTGHN distribution. Moreover, the maximum likelihood estimation procedure and

the Bayesian estimation method using M-H MCMC method to infer the ALT model

parameters are analytically derived. The bootstrap percentile CI of the quality parameter

is presented with an algorithm.

3.1. Statistical model

Let the quality characteristic of a product T follow a GHN distribution, which has

the PDF

f(t;α, η) =

√

2

π

(α

t

)( t

η

)α

exp
{

− 1

2

( t

η

)2α}

, α, η, t > 0, (3.1)

where α is shape parameter and η is scale parameter. Let θ = η−2α, then the PDF in

Equation (3.1) can be represented by

f(t;α, θ) =

√

2

π
α
√
θtα−1 exp

{

− 1

2
θt2α

}

, α, θ, t > 0. (3.2)

The cumulative distribution function (CDF) based on the PDF in Equation (3.2) can be

presented by

F (t;α, θ) = 2Φ[
√
θtα]− 1 = 1− 2Φ[−

√
θtα], α, θ, t > 0 (3.3)

where Φ(·) is the CDF of standard normal distribution. The survival function can be

presented by

S(t;α, θ) = 1− F (t;α, θ) = 2Φ[−
√
θtα], α, θ, t > 0. (3.4)

We can extend the F (t;α, θ) of GHN distribution defined in Equations (3.3) and (3.4)

to a DTGHN distribution by

G(x) ≡ G(x;α, θ) =
F (x;α, θ) − F (µ;α, θ)

F (v;α, θ) − F (µ;α, θ)

=
Φ[−

√
θµα]− Φ[−

√
θxα]

d(µ, v;α, θ)
, 0 < µ ≤ x ≤ v, (3.5)

where µ and v are the lower and upper truncated bounds, respectively and d(µ, v;α, θ) =

Φ[−
√
θµα]− Φ[−

√
θvα]. Denote the DTGHN distribution in Equation (3.5) by

DTGHN(α, θ). The DTGHN(α, θ) is a generalization of the GHN distribution. When

µ = 0 and v → ∞, G(x) = F (t;α, θ); when µ → 0, G(x) is the upper truncated GHN

distribution and when v → ∞, G(x) is the lower truncated GHN distribution. The PDF

of G(x) can be obtained by

g(x;α, θ) =

√
θαxα−1Φ[−

√
θxα]

d(µ, v;α, θ)
, 0 < µ ≤ x ≤ v, (3.6)
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where Φ(·) is the PDF of the standard normal distribution. The values of µ and v can

be determined based on the knowledge from historical data. If practitioners have no idea

or lack historical information to determine the values of µ and v, they can take µ → 0

and v → ∞ to use the DTGHN distribution for practical applications.

3.2 The accelerated life test model and estimation method

Assume that the lifetime products are tested using an ALT with stress s, which has

the levels s1 ≤ s2 ≤ · · · ≤ sm. Denote the relationship of the parameters in the DTGHN

distribution with the stress levels by θi ≡ θ(si) = b0 + b1si and αi ≡ α(si) = a0 + a1si.

Total ni lifetime units are used for life testing under the stress si for i = 1, 2, . . . ,m. Let

Θ = (a0, a1, b0, b1). Then the likelihood function based on the ALT sample x = {xij , i =
1, 2, . . . ,m, j = 1, 2, . . . , ni} can be obtained by

L(Θ;x) =
m
∏

i=1

ni
∏

j=1

g(xij ; Θ)

=
m
∏

i=1

ni
∏

j=1

√
θiαix

αi−1
ij Φ[−

√
θix

αi

ij ]

d(µ, v;αi, θi)
. (3.7)

Moreover, the log-likelihood function based on the Equation (3.7) can be obtained by

ℓ(Θ;x) =

m
∑

i=1

ni

(1

2
ln θi + lnαi

)

+

m
∑

i=1

(αi − 1)

ni
∑

j=1

lnxij

+
m
∑

i=1
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∑

j=1

ln Φ[−
√

θix
αi

ij ]−
m
∑

i=1

ni ln{d(µ, v;αi, θi)}. (3.8)

Denote the MLEs of the parameters a0, a1, b0 and b1 by â0, â1, b̂0 and b̂1, respectively. Let

θ̂i = b̂0+b̂1si, α̂i = â0+â1si and Θ̂ = â0, â1, b̂0, b̂1. Then the MLEs â0, â1, b̂0 and b̂1 can be

obtained by simultaneously solving the log-likelihood equations ℓa0 = ∂ℓ(Θ;x)
∂a0

∣
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∣
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m
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ni
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+

m
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∑
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m
∑
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∑
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+

m
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√
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√
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√
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√
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, (3.9)
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, (3.10)



ACCELERATED LIFE TESTING 41

ℓb0 =
1
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m
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ℓb1 =
1

2

{

m
∑

i=1

nisi

θ̂i
−

m
∑

i=1

si

ni
∑

j=1

x2α̂i

ij +
m
∑

i=1

nisi
√

θ̂i

Φ(−
√

θ̂iµ
α̂i)µα̂i−Φ(−

√

θ̂iv
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d(µ, v; α̂i, θ̂i)

}

, (3.12)

The Equations (3.9) to (3.12) are very complicated. It is not easy to search the

MLEs â0, â1, b̂0 and b̂1 by directly solving the four log-likelihood equations. Normally,

algorithms for implementing Newton-Rapson method can be used to obtain the MLEs.

But the estimating results could be unstable due to it is very difficult to set up four

proper initial parameter solutions to implement the Newton-Rapson method. In this

study, we propose a MCMC approach using M-H algorithm to obtain Bayes estimates

of the ALT model parameters, in which non-informative prior distributions of the model

parameters are applied. The resulting Bayes estimates of the parameters are close to the

MLEs. Considering the prior PDF for Θ :

π(Θ) = π(a0, a1, b0, b1) = π(a0)× π(a1)× π(b0)× π(b1), (3.13)

where π(a0) ∝ c1, π(a1) ∝ c2, π(b0) ∝ c3 and π(b1) ∝ c4, ci is constant for i = 1, 2, 3,

and 4. The posterior PDF can be obtained by

π(Θ;x) ∝ L(Θ;x)× π(Θ). (3.14)

Because π(Θ) ∝ constant, then we obtain

π(Θ;x) ∝ L(Θ;x). (3.15)

We take into account the squared loss function to implement the proposed Bayesian

estimation procedure. Hence, the Bayes estimator of parameter can be the mean of the

posterior distribution. Because no explicit expressions for the Bayes estimators of the

ALT model parameters, the M-H MCMC approach is applied to searching the Bayes es-

timates. It is noted that the major contribution in the posterior distribution in Equation

(3.15) comes from the likelihood function, and hence the Bayes estimate of Θ is close to

the MLE of Θ in this study. The M-H MCMC procedure can be implemented with the

following algorithm:

Algorithm 1: M-H MCMC procedure

Initial Step: Establish the initial states, a
(0)
0 , a

(0)
1 , b

(0)
0 and b

(0)
1 , for parameters a0, a1, b0

and b1.

Step 1: Propose the transition probabilities (or named proposals) q1(a
∗

0; a
(i)
0 ) according

to a
(i)
0 to a∗0, propose the transition probabilities q2(a

∗

1; a
(i)
1 ) according to a

(i)
1

to a∗1, propose the transition probabilities q3(b
∗

0; b
(i)
0 ) according to b

(i)
0 to b∗0 and

q4(b
∗

1; b
(i)
1 ) according to b

(i)
1 to b∗1.
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Step 2: Implement Step 2.1−Step 2.4 N times for i = 0, 1, 2, . . . , N , where N is a huge

number.

Step 2.1: Generate a∗0 from q1(a
∗

0; a
(i)
0 ), and generate u from U(0, 1), where U(0, 1)

denotes the uniform distribution over the interval (0, 1). Update a
(i+1)
0

according to the following condition:

a
(i+1)
0 =











a∗0, if u≤min

{

1,
π(a∗0; a

(i)
1 , b

(i)
0 , b

(i)
1 ,x)

π(a
(i)
0 ; a

(i)
1 , b

(i)
0 , b

(i)
1 ,x)

q1(a
(i)
0 ; a∗0)

q1(a
∗

0; a
(i)
0 )

}

,

a
(i)
0 , otherwise.

(3.16)

Step 2.2: Generate a∗1 from q2(a
∗

1; a
(i)
1 ), and generate u from U(0, 1). Update a

(i+1)
1

according to the following condition:

a
(i+1)
1 =











a∗1, if u≤min

{

1,
π(a∗1; a

(i+1)
0 , b

(i)
0 , b

(i)
1 ,x)

π(a
(i)
1 ; a

(i+1)
0 , b

(i)
0 , b

(i)
1 ,x)

q2(a
(i)
1 ; a∗1)

q2(a∗1; a
(i)
1 )

}

,

a
(i)
1 , otherwise.

(3.17)

Step 2.3: Generate b∗0 from q3(b
∗

0; b
(i)
0 ), and generate u from U(0, 1). Update b

(i+1)
0

according to the following condition:

b
(i+1)
0 =











b∗0, if u≤min

{

1,
π(b∗0; a

(i+1)
0 , a

(i+1)
0 , b

(i)
1 ,x)

π(b
(i)
0 ; a

(i+1)
0 , a

(i+1)
1 , b

(i)
1 ,x)

q3(b
(i)
0 ; b∗0)

q3(b∗0; b
(i)
0 )

}

,

b
(i)
0 , otherwise.

(3.18)

Step 2.4: Generate b∗1 from q4(b
∗

1; b
(i)
1 ), and generate u from U(0, 1). Update b

(i+1)
1

according to the following condition:

b
(i+1)
1 =











b∗1, if u≤min

{

1,
π(b∗1; a

(i+1)
0 , a

(i+1)
1 , b

(i+1)
0 ,x)

π(b
(i)
1 ; a

(i+1)
0 , a

(i+1)
1 , b

(i+1)
0 ,x)

q4(b
(i)
1 ; b∗1)

q4(b∗1; b
(i)
1 )

}

,

b
(i)
1 , otherwise.

(3.19)

Step 3: The Bayes estimates can be obtained by â0B =

∑N
i=M+1 a

(i)
0

N −M
, â1B =

∑N
i=M+1 a

(i)
1

N −M
,

b̂0B =

∑N
i=M+1 b

(i)
0

N −M
and b̂1B =

∑N
i=M+1 b

(i)
1

N −M
based on the squared loss functions

L(â0B , a0) = (â0B − a0)
2, L(â1B , a0) = (â1B − a1)

2, L(b̂0B , b0) = (b̂0B − b0)
2

and L(b̂1B , b1) = (b̂1B − b1)
2, respectively, where the first M chains are used for

burn-in and the burn-in chains are removed from the parameter estimation.

In practice, we can select symmetric transition probability functions to reduce com-

putation loading. In this study, the uniform distribution is used for characterizing the

transition probability functions qi(·) for i = 1, 2, 3 and 4.
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3.3. The bootstrap method for interval estimation

The CIs of the parameters a0, a1, b0 and b1 can be obtained by using the MLEs

and observed Fisher information matrix, which contains the “second derivatives” of the

log-likelihood function with respect to the parameters a0, a1, b0 and b1 as components.

Because the first derivatives of the log-likelihood function in Equations (3.9) to (3.12) are

very complicated, it is difficult to obtain the explicit form of Fisher information matrix.

This fact makes that the observed Fisher information matrix conservative for practical

use. Hence, we recommend to use bootstrap percentile method to obtain the CIs of the

function of the parameters a0, a1, b0 and b1, denoted it by δ(≡ δ(Θ)). The δ can be

the quality parameter, for example the distribution quantiles. Based on the invariant

property of the MLEs, the MLE of δ is denoted by δ̂(≡ δ(Θ̂)) in which Θ̂ is the MLE of

Θ.

Algorithm 2: The bootstrap procedure

Step 1: Obtain the MLEs of a0, a1, b0 and b1 based on the random sample, which has

n observations taken from the DTGHN(αi, θi) with the stress equations θi =

(b0 + b1si) and αi = (a0 + a1si) for i = 1, 2, . . . ,m, and denote the vector of

MLEs by Θ̂ = (â0, â1, b̂0, b̂1).

Step 2: Generate bootstrap samples, each sample with n observations, from the

DTGHN(θ̂i, α̂i), where θ̂i = b̂0 + b̂1si and α̂i = â0 + â1si for i = 1, 2, . . . ,m.

Obtain the MLEs of a0, a1, b0 and b1 based on the bootstrap samples and denote

than by Θ̂∗ = (â∗0, â
∗

1, b̂
∗

0, b̂
∗

1).

Step 3: Repeat Step 2 B times, and denote the bootstrap estimates of Θ by Θ̂∗(j) for

j = 1, 2, . . . , B. The bootstrap estimates of δ(Θ) are denoted by δ̂∗(j) ≡ δ(Θ̂∗(j))

for j = 1, 2, . . . , B. Denote the bootstrap empirical sampling distribution of

δ̂ by ĜB , which can be constructed using the bootstrap estimates δ̂∗(j) for

j = 1, 2, . . . , B.

Step 4: The (1− 2γ)× 100% bootstrap percentile CI is (δ̂∗L, δ̂
∗

U ), where δ̂
∗

L and δ̂∗U is the

100γth percentile and 100(1 − γ)th percentile of ĜB .

In reliability evaluation studies, we often are interested in evaluating the 100pth

percentile of the lifetimes of the products. If the underlying distribution at the normal-

use condition is DTGHN(α0, θ0), then we can have δ = xp. It can be shown that the

100pth percentile xp can be presented by

xp =

(

− 1√
θ0

Φ−1{Φ(−
√

θ0µ
α0)− p× d(µ, v;α0, θ0)}

)
1

α0

. (3.20)

In particular, when µ = 0 and v = ∞, we obtain d(µ, v;α0, θ0) = 1/2 and

xp =

(

− 1√
θ0

Φ−1
{1− p

2

}

)
1

α0

=

(

1√
θ0

Φ−1
{1 + p

2

}

)
1

α0

. (3.21)
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Equation (3.21) is the 100pth percentile of the GHN distribution at the normal-use

condition. The implementation of the proposed methods can be summarized in the

following algorithm:

Algorithm 3: The implementation of the proposed method

Step 1: Obtain the normalized stress levels and denote them by s0 ≤ s1 ≤ s2 ≤ · · · ≤ sm
in which the normal-use stress s0 = 0 and the highest stress sm = 1.

Step 2: Obtain the Bayes estimates of the model parameters via using the proposed

M-H MCMC procedure in Algorithm 1. Then obtain the Bayes estimate of δ.

Step 3: Obtain the (1− 2γ)× 100% bootstrap percentile CI of δ by using the proposed

bootstrap procedure in Algorithm 2.

4. Monte Carlo Simulations

A simulation study is conducted in this section to study the estimation performance

of the proposed maximum likelihood estimation and M-H MCMC methods. Moreover,

the estimation performance of the proposed M-H MCMC method is compared with the

maximum likelihood estimation. When implement the maximum likelihood estimation,

the MLEs of the ALT model parameters are obtained by using the Newton-Raphson

method with the QN algorithm, which was proposed by Byrd et al. [3] is an efficient

algorithm, which uses a limited-memory modification to implement the Newton-Raphson

method. The QN method allows box constraint for searching the solution of parameter

in an interval. The initial solutions of parameters must satisfy the box constraints.

Denote the normal-use condition stress level and the highest stress level by s0 = 0 and

sH = 1. The highest stress level must be free of the over stress condition and decided

based on the knowledge of engineers. In this study, we consider two normalized stress

Figure 1: The density curve of the DTGHN(α0 = a0, θ0 = b0) with u = 0, v = 5, a0 = 2.5 and
b0 = 0.5 under the normal-use condition.
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Figure 2: The hazard rates of the (a) DTGHN(α1, θ1) (solid line) and (b) DTGHN(α2, θ2) (dash
line).

levels with s = (s1, s2) = (sL, sH) = (0.3, 1) for the ALT. Assume that n = 10, 20,

and 30 components are used for implementing the ALT. The quality characteristics of

components follow a DTGHN(αi = a0 + a1si, θi = b0 + b1si), which was defined in the

Equations (3.5) and (3.6) with u = 0, v = 5, a0 = 2.5, a1 = 1, b0 = 0.5 and b1 = 0.25 for

i = 1 and 2. The density curve at the normal-use condition of stress is given in Figure

1, and the hazard rates under two used stress levels are plotted in Figure 2. When the

stress is at the normal-use condition, we have α0 = a0, and θ0 = b0. From Figure 2

we can see that the hazard rate increases when the stress increases to s2 from the lower

stress s1.

For doing a fair comparison for the M-H MCMC method with the Newton-Raphson

method, we search the estimates of parameters a0, a1, b0 and b1 over the same domains

for the parameters with Da0 = {0.5 ≤ a0 ≤ 5}, Da1 = {0.5 ≤ a0 ≤ 5}, Db0 = {0.01 ≤
b0 ≤ 1.5} and Db1 = {0.01 ≤ b1 ≤ 1.5}, respectively. Because we cannot know the proper

initial solutions of parameters in most real cases when applying Newton-Raphson method

to searching the MLEs of the parameters, the initial solutions of a0, a1, b0 and b1 are

randomly generated from the uniform distributions that are defined on the domains Da0 ,

Da1 , Db0 and Db1 , respectively. When applying the M-H MCMC method to searching

the estimates of parameters, we use the uniform distributions over the domains Da0 , Da1 ,

Db0 and Db1 as the transition probabilities q1, q2, q3 and q4.

Consider N = 8000 chains to implement the M-H MCMC method. Moreover, we

drop the first 20% chains for burn-in, that is, the first 1600 chains are drop out from

the Markov chains for burn-in in each iteration run of simulations. Then the Bayes

estimates of a0, a1, b0 and b1 are obtained by using the remainder 6400 Markov chains.

Because non-informative prior distributions are used in the M-H MCMC method and we

use uniform distributions as the transition probabilities, the resulting Bayes estimates of

a0, a1, b0 and b1 are close to the MLEs.

Figures 3 to 6 show the box plots of 10000 obtained MLEs and Bayes estimates of

the parameters a0, a1, b0 and b1 for different sample sizes. We can find that almost all
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Figure 3: The box plots of 10000 estimates of a0, in which the “m.n” and “B.n” denote the MLE
and Bayes estimate of a0, respectively, that are obtained based on samples each of size n.

box length decreases as the sample size increases. The only exception is the MLEs in

the Figure 6. Because the Newton-Raphson method requires precisely initial solutions

of parameters to obtain reliable MLE for complicated log-likelihood function, the MLE

becomes unstable if improper initial solutions are used. In this simulation study, the

initial solutions of parameters are uniformly generated from the domains Da0 , Da1 , Db0

and Db1 , respectively. We cannot guarantee that we can always obtain proper initial

solutions of the parameters. This drawback is the major difficulty to implement Newton-

Raphson method for searching the reliable MLEs of the ALT model parameters.

From Figures 3 to 6 we find that the M-H MCMC method outperforms the Newton-

Raphson method to obtain reliable estimates of the model parameters. Compared with

the MLEs, the Bayes estimates have less dispersion and almost all the medians of Bayes

Figure 4: The box plots of 10000 estimates of a1, in which the “m.n” and “B.n” denote the MLE
and Bayes estimate of a1, respectively, that are obtained based on samples each of size n.
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estimates of the ALT model parameters are closer to their true values than their com-
petitors, the medians of the MLEs of the parameters.

The estimation bias and mean squared error (MSEs) of each parameter are evaluated
based on the obtained estimates in 10000 iteration runs. All the simulation results are
reported in Tables 1 to 3. From Tables 1 to 3 we can find that the bias of MLEs is
competitive with the Bayes estimates when the sample size is 10. But the MSEs of
the MLEs are larger than the MSEs of the Bayes estimates. When the sample size
grows, the Bayes estimates outperform the MLEs and have smaller bias and MSE for all
parameters. These results indicate that the M-H MCMC method performs better than
the Newton-Raphson method to obtain reliable estimates of the parameters. Please note
that the largest sample size used for each stress level in simulations is 30 and the total
sample size is 60. The estimation performance of the proposed M-H MCMC method is
still acceptable even the sample size for ALT is not big.

Figure 5: The box plots of 10000 estimates of b0, in which the “m.n” and “B.n” denote the MLE
and Bayes estimate of b0, respectively, that are obtained based on samples each of size n.

Figure 6: The box plots of 10000 estimates of b1, in which the “m.n” and “B.n” denote the MLE
and Bayes estimate of b1, respectively, that obtained based on samples each of size n.



48 HUA XIN AND JIAN-PING ZHU

Table 1: The bias and MSEs of the estimates for n = 10.

Bias MSE

a0 a1 b0 b1 a0 a1 b0 b1

MCMC 0.1572 0.6862 0.0996 0.2341 0.296 0.7558 0.0444 0.093

MLE 0.7741 0.4973 0.1833 0.1521 1.4778 2.1301 0.1576 0.2645

Table 2: The bias and MSEs of the estimates for n = 20.

Bias MSE

a0 a1 b0 b1 a0 a1 b0 b1

MCMC 0.2953 0.2851 0.1015 0.1185 0.2694 0.2279 0.0342 0.0437

MLE 0.8205 0.6268 0.234 0.1504 1.3075 2.5794 0.1596 0.2402

Table 3: The bias and MSEs of the estimates for n = 30.

Bias MSE

a0 a1 b0 b1 a0 a1 b0 b1

MCMC 0.3717 0.1079 0.1133 0.0532 0.2686 0.1011 0.0311 0.0256

MLE 0.7534 0.8389 0.242 0.1948 1.3324 3.0301 0.1690 0.2608

It is noticed that the half-normal is the asymptotic distribution of skew-normal (SN)

distribution, which contains a location parameter, a scale parameter and a skewness

parameter. The model misspecification of the DTGHN and SN distributions could be a

problem. However, the domain of SN is (−∞,∞), we cannot use ALT inference method

under the SN distribution for lifetime data.

5. An Example

Cooray and Anaada [4] discussed two examples regarding the stress-rupture life of

Kevlar 49/epoxy, in which all lifetime components are subject to 70% and 90% stress lev-

els, respectively, until all tested lifetime components had failed. The sample at the stress

70% contains 49 data points and the sample at the stress 90% contains 101 data points.

Cooray and Anaada [4] used the GHN distribution, which has the PDF in Equation (1.1),

to individually model these two data sets and confirmed that the GHN distribution is a

better candidate model for these two data sets than the gamma, lognormal, Weibull and

Birnbaum-Saunders distributions.

The estimation results based on the sample for the stress level 90% is more reliable

due to the sample size is large and the data spread is tight than that at the stress level

70%. Hence, we consider the GHN with the MLEs as the plug-in parameters at the stress

level 90% as the underlying distribution to generate ALT data sets for illustration in this

section. Based on the estimation results obtained by Cooray and Anaada [4], the plug-in



ACCELERATED LIFE TESTING 49

parameters are α0 = 0.711 and η0 = 1.2238 for the GHN distribution with the PDF in

Equation (3.1). We can obtain the GHN distribution with the PDF in Equation (3.2)

that has the parameters α1 = 0.711 and θ0 = η−2α0

0 = 0.7504. Let µ = 0 and v = 5, then

we can create a DTGHN distribution for data generation. Consider the parameters in

the ALT model a0 = 0.711, a1 = 0.5, b0 = 0.7504, and b1 = 0.35 for generating two data

sets, each has size 50 for the normalized stress levels s1 = 0.5 and s2 = 1, respectively.

That is, we generate 50 failure times from the DTGHN(α1 = 0.961, θ1 = 0.9254) and

DTGHN(α2 = 1.211, θ2 = 1.1004), respectively, as the ALT samples. We would like to

check the estimation performance of the proposed method based on intermediate size

samples in this example. The generated data sets are given in Tables 4 and 5.

All the estimates of the ALT parameters are search over the domains Da0 = {0.01 ≤
a0 ≤ 5}, Da1 = {0.01 ≤ a0 ≤ 5}, Db0 = {0.01 ≤ b0 ≤ 5} and Db1 = {0.01 ≤ b1 ≤ 5},
respectively. The initial solutions for implementing the maximum likelihood estimation

are randomly generated from the uniform distribution over the range (0.01, 5). The MLEs

based on the maximum likelihood estimation are obtained by â0 = 2.0815, â1 = 3.5032,

b̂0 = 0.9665 and b̂1 = 1.8632. The Bayes estimates based on the M-H MCMC method

with N = 8000 and M = 1600 are obtained by â0B = 0.8160, â1B = 0.3765, b̂0B = 0.6026

and b̂1B = 0.3391. We can find that the Bayes estimates outperform the MLEs, and the

Bayes estimates are closer to the true parameters than the MLEs. Hence we use the

Bayes estimates to infer the quality parameter in the next step.

Table 4: 50 failure times from DTGHN(α1 = 0.961, θ1 = 0.9254).

0.0262 0.0444 0.0797 0.0833 0.1161 0.1216 0.1531 0.1583 0.2428 0.3008

0.3010 0.3154 0.3354 0.3775 0.4345 0.4403 0.4649 0.5416 0.5461 0.5808

0.5980 0.6079 0.6127 0.6323 0.6663 0.6756 0.6894 0.6999 0.7589 0.7883

0.9042 0.9696 0.9928 0.9947 1.0361 1.0428 1.1464 1.3035 1.3390 1.4102

1.4320 1.4905 1.6154 1.6340 1.6454 1.6778 1.7119 1.7901 2.5964 3.1636

Table 5: 50 failure times from DTGHN(α2 = 1.211, θ2 = 1.1004).

0.0540 0.0622 0.1191 0.1711 0.1731 0.2265 0.2560 0.2913 0.2997 0.3407

0.3445 0.4373 0.4484 0.4611 0.4688 0.5001 0.5177 0.5356 0.5784 0.5953

0.6046 0.7716 0.7775 0.8165 0.8183 0.8212 0.8553 0.8650 0.8728 0.8820

0.9832 0.9933 1.0001 1.0647 1.0932 1.1214 1.1393 1.1919 1.2170 1.3178

1.3736 1.4047 1.4386 1.4534 1.5078 1.6172 1.7624 2.0465 2.1307 2.5394

The Markov chains of each Bayes estimates are plotted in Figure 7. From Figure 7

we can find that the Markov chains of â0B and â1B are less randomized than that of the

Markov chains of b̂0B and b̂1B . But compare with the MLEs â0, â1, b̂0, and b̂1, all the

Markov chains can result in better Bayes estimates to cover the true values.

Assume that we would like to study the median of lifetime components at the normal-

use condition, the true median lifetime at the normal-use condition can be obtained with
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Figure 7: The Markov chains of (a) â0,B (b) â1,B (c) b̂0,B and (d) b̂1,B. The dash line indicates
the true parameter.

α0 = a0 and θ0 = b0 by

x0.5 =
(

− 1√
b0
Φ−1{Φ(−

√

b0µ
a0)− 0.5× d(µ, v; a0, b0)}

)
1

a0 = 0.5686. (5.1)

The MLE x̂0.5,B through using the M-H MCMC estimates can be obtained by

x0.5B =
(

− 1
√

b̂0B

Φ−1{Φ(−
√

b̂0Bµ
â0B )− 0.5× d(µ, v; â0B , b̂0B)}

)
1

â0B = 0.6137. (5.2)

Repeat the procedure to obtain the x̂0.5B 1000 times, we can create the empir-

ical sampling distribution of x̂0.5B from the obtained 1000 estimates x̂
(i)
0.5B for i =

1, 2, . . . , 1000. Then the 95% bootstrap percentile CI of x0.5 is evaluated based on the
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empirical sampling distribution via using the Algorithm 2 in Section 3. The resulting CI

is (0.5480, 0.6365). We note that this CI covers the true value x0.5 = 0.5686. Hence, we

can conclude that the median lifetime of the type product can survive at least 0.5480

unit of time to 0.6365 unit of time.

We also study the coverage probability of the proposed bootstrap percentile CI via

simulations. Because the M-H MCMC method asks iterative computation for obtaining

Bayes estimators and the bootstrap percentile method also asks iterative computation for

obtaining the empirical sampling distribution of the estimator to construct a CI, it is very

time consuming to implement simulations for obtaining the coverage probability. Figure

8 shows 150 bootstrap percentile CIs with confidence level 95%. From Figure 8 we can

see that the bootstrap percentile CIs of x0.5 are not symmetric. That is the major reason

why the approximate CI of x0.5 that is obtained via using normality approximation and

Fisher information matrix are conservative. The coverage probability is 0.973 for these

150 bootstrap percentile CIs. We find that the bootstrap percentile CI of x0.5 is also

conservative but should be less conservative than that is obtained via using the normality

approximation and Fisher information matrix.

Figure 8: 150 bootstrap percentile CIs for x0.5, which has the confidence level 95%. The dash
line is the true x0.5.

6. Conclusions

In this paper, we study the maximum likelihood estimation and Bayesian estimation

methods for estimating the ALT parameters for the DTGHN distribution. The DTGHN

distribution covers many lifetime distributions as special cases, so the DTGHN distri-

bution can be a good candidate distribution for modeling lifetime data. We consider a

general ALT model, in which both the shape and scale parameters are allowed to link the

stress levels through using line functions. To overcome the complexity due to using the

Fisher information matrix with second derivatives for implementing interval inference for

the model parameters and to improve the conservative properties for the CIs that are
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developed based on the observed Fisher information matrix, an algorithm is proposed

to obtain the bootstrap percentile CIs for the quantities of the quality characteristics of

products.

The Newton-Raphson method with QN is used to implement the maximum like-

lihood estimation and the M-H MCMC approach is used to implement the proposed

Bayesian estimation procedure. Monte Carlo simulations were conducted to evaluate the

estimation performance of the proposed methods. We found that the Bayesian estima-

tion with the M-H MCMC algorithm outperforms the maximum likelihood estimation

with the Newton-Raphson method even based on intermediate size samples. Roughly,

the Bayes estimates have smaller bias and MSE than that of the MLEs. Because we use

non-informative prior distributions for the model parameters to develop the M-H MCMC

method, the Bayes estimates are close to the MLEs.

An example regarding the stress-rupture life of Kevlar 49/epoxy is used to illustrate

the applications of the proposed methods. In the illustrative example, we find that there

are room to improve the estimation for the parameters a0 and a1 via using the proposed

M-H MCMC method. Because we use non-informative prior distributions to characterize

the model parameters and use uniform distributions as proposals, the convergence of the

proposed M-H MCMC method is slow. How to improve the estimation performance of

the proposed Bayesian method and bootstrap CI inference procedure for quantiles are

two interesting topics. The half-normal is the asymptotic distribution of SN distribution,

which contains a location parameter, a scale parameter and a skewness parameter. It

is known that the SN distribution contains the normal distribution as special case. But

the SN distribution cannot be used for the reliability applications based on lifetime

data due to the domain of the SN distribution can be negative. Hence, how to define

a generalized SN (GSN) distribution and a truncated GSN (TGSN) distribution and

extend the proposed method for a TGSN distribution also are three important topics.

All these five topics will be studied in the future.

Acknowledgements

This study is jointly supported by the grants of Heilongjiang Bureau of Statistics,

China NO:2018B11.

References

[1] Ahmadi, K., Rezaei, M. and Yousefzadeh, F. (2015). Estimation for the generalized half-normal dis-

tribution based on progressive Type-II censoring, Journal of Statistical Computation and Simulation,
Vol.85, 1128-1150.

[2] Altun, E., Yousof H. M. and Hamedani, G. G. (2018). A new generalization of generalized half-normal

distribution: properties and regression models, Journal of Statistical Distributions and Applications,
5:7; https://doi.org/s40488-018-0089-4.

[3] Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound con-

strained optimization, SIAM Journal of Scientific Computing, Vol.16, 1190-1208.

[4] Cooray, K. and Ananda, M. M. (2008). A generalization of the half-normal distribution with appli-

cations to lifetime data, Communications in Statistics-Theory and Methods, Vol.37, 1323-1337.



ACCELERATED LIFE TESTING 53

[5] Cordeiro, G. M., Pescim, R. R. and Ortega, E. M. (2012). The Kumaraswamy generalized half-normal

distribution for skewed positive data, Journal of Data Science, Vol.10, 195-224.

[6] Cordeiro, G. M., Alizadeh, M., Pescim, R. R. and Ortega, E. M. (2017). The odd log-logistic gener-

alized half-normal lifetime distribution: properties and applications, Communications in Statistics-
Theory and Methods, Vol.46, 4195-4214.

[7] He, Q., Zha, Y., Sun, Q., Pan, Z. and Liu, T. (2017). Capacity fast prediction and residual useful

life estimation of valve regulated lead acid battery, Mathematical Problem in Engineering, Article
ID 7835049, 9 pages.

[8] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, John Wiley & Sons, NY,
USA.

[9] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, John Wiley &
Sons, NY, USA.

[10] Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans and Data Analysis, John
Wiley & Sons, NJ, USA.
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