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Abstract

To shed more light into using the minimax distribution free procedure to obtain the

optimal order quantity, this paper specifically focuses on the work of Gallego (1992). The

previous author created a two-point distribution to serve as the most unfavorable case among

the distribution with the same mean and variance to estimate the expected cost of the lost

sales. However, such solution procedure contains a sequence that is dependent on whether

it is convergent or not. The purpose of this paper is three fold. First is to point out some

questionable areas in the solution procedure of Gallego (1992). Second is to find a reasonable

condition to ensure the existence of the optimal order quantity. Lastly, numerical examples

are given to illustrate the findings.
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1. Introduction

The lead time demand for inventory models is usually assumed to follow the normal

distribution, but it cannot provide a proper approximation for other distribution types.

On the other hand, actual business demand is often difficult to forecast such that re-

searchers are unable to accurately estimate its distribution. Nonetheless, as researchers

can evaluate expect value and variance using historical information, the two-point dis-

tribution proposed by Gallego [1] becomes a possible tool to stand for the worse-case

scenario. The savings from the normal distribution to the worst case can be applied to

find the actual distribution of the lead time demand. The first paper to consider the

minimax distribution free approach to derive the optimal order quantity was in 1958

by Scarf [11]. This method only used the mean and the variance of demand without

any assumptions on the type of demand distribution. It was not until Gallego [1] who

applied the same approach for an inventory model with backorder which was considered

a breakthrough in the estimation of lead time demand. He developed a two-point distri-

bution to serve as the worst case among all distribution types with the same expected

value and standard derivation to evaluate cost of lost sales. It involves the continuous

inventory model with a mixture of backorders and lost sales. However, the existence and
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uniqueness of the solution using such method has not been verified. Under a reasonable

condition, this paper intends to provide a strong foundation to support it. Many papers

had adopted such method in lead time demand studies for the same purpose as well as

to obtain optimal order quantity and optimal lead time in the worst possible case. For

example, Gallego and Moon [2] further extended minimax distribution free approach to

deal with the newsboy problem; Ouyang and Chang [7] considered the mixed inventory

model; Ouyang and Chuang [8] studied the inventory model under service levels con-

straint; and Wu et al. [13] considered the inventory models with controllable lead time.

Hence, it is possible to establish that this approach has become an important method

when dealing with inventory models of unknown demand distribution. Up to now, there

is a total of 52 papers that had cited Gallego [1] in their references. However, only

Lin et al. [5] provided a solution method to replace the iterative sequence proposed by

Gallego [1] without discussing the latters sequence approach. Other recent papers that

applied the minimax distribution free approach include: Hung et al. [3], Lin and Chu

[6], Kumar and Goswami [4], Qi et al. [9], Şen and Talebian [10], Wright [12], and Wu

and Warsing [14]. The rest of the other citations only mentioned the work of Gallego [1]

in their introduction. This study explores the solution of Gallego [1] in detail to provide

a more valid support for future scholars who want to continue working on this method.

The rest of the paper is organized as follows: in the first part, a proof is shown that

the sequence will converge and the limit is a feasible solution of Gallego [1]. In the later

part, a method to find the criterion to guarantee the sequence will converge and that the

limit is becomes a feasible solution is presented.

2. Notation

For consistency with previous studies, the same notation and the assumptions are

used as in Gallego [1] and Gallego and Moon [2].

D = average demand per year.

F = the cumulative distribution of the lead time demand.

h = inventory carrying cost per item per year.

K = the fixed ordering cost per order.

Q = order quantities per order.

R = reorder point, under the assumption R ≥ µ.

π = unit shortage cost.

µ = mean lead time demand.

∆ = R− µ.
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σ2 = variance of the lead time demand.

E(x−R)+ =

∫

max(x−R, 0)dF (x) is the expected shortage units per inventory cycle.

Q1 = the economic order quantity with Q1 =

√

2KD

h
.

M = the maximum feasible solution for the order quantity withM =

√

2KD + πσD

h
.

3. Review of Results

Gallego [1] considered the average annual total cost for inventory model with lead
time demand distribution F as

C(Q,R,F ) =
KD

Q
+ h

(Q

2
+R− µ

)

+
πD

Q

∫

max(x−R, 0)dF (x). (3.1)

F has known finite first and second moments but there is no assumption on the
distribution form of F . Gallego used Ω to denote the class of cumulative distributions
function with mean µ and variance σ2. He applied the minimax approach of Scarf [11]
to find the most unfavorable distribution in Ω for each (Q,R) and then minimized over
(Q,R). Gallego derived the following upper bound to estimate the expected shortage
units per cycle.

Proposition 1 (Gallego [1]). The least favorable distribution F ∈ Ω is a two point

distribution. Moreover,

max
F∈Ω

∫

max(x−R, 0)dF (x) =

√
σ2 +∆2 −∆

2
.

Many papers have used the upper bound in Proposition 1 of Gallego [1]. The fol-
lowing minimum problem for the expected annual total cost was considered:

C(Q,∆) =
KD

Q
+ h

(Q

2
+ ∆

)

+
πD

2Q
(
√

∆2 + σ2 −∆). (3.2)

over {(Q,∆) : Q > 0,∆ ≥ 0}. It was further derived that
∂C(Q,∆)

∂Q
and

∂C(Q,∆)

∂∆
,

then a solution was made for
∂C(Q,∆)

∂Q
= 0 and

∂C(Q,∆)

∂∆
= 0 under the restriction

∆ ≥ 0 and Q > 0. From
∂C(Q,∆)

∂Q
= 0, the following equation was obtained

Q =

√

2KD

Q
+

πD

h
(
√

∆2 + σ2 −∆). (3.3)

From
∂C(Q,∆)

∂∆
= 0, it was found that

∆√
∆2 + σ2

≥ 1− 2hQ

πD
. (3.4)
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under the condition ∆ ≥ 0, and finally discovered the restriction for the feasible solution,

which is

πD ≥ 2hQ. (3.5)

Without detailed explanation, Gallego claimed [1] that under the restriction πD ≥ 2hQ,

∆ =
(πD − 2hQ)σ

2
√

(hQ(πD − hQ))
(3.6)

and
√

∆2 + σ2 −∆ = σ

√

hQ

πD − hQ
. (3.7)

Substituting Equations (3.5) and (3.6), the following equation is obtained

Q =

√

√

√

√

2KD

h
+

πDσ

h

√

hQ

πD − hQ
. (3.8)

One of the main assumption is that Q1 =

√

2KD

h
and if the restriction in Equation

(3.5) was satisfied, Equation (3.8) can be used to update Q. It was known that the

sequence of updates is an increasing sequence, say (Qn). The procedure was repeated

until it was convergent or until the restriction in Equation (3.5) was violated. If the

sequence converged toQ∗, then Equation (3.6) was used to find ∆∗ to imply that (Q∗,∆∗)

satisfied the first order conditions and the restriction in Equation (3.5) was satisfied,

hence; the pair (Q∗,∆∗) is optimal.

Otherwise, if the restriction in Equation (3.5) was violated, then the following pair

(Q∗,∆∗) =
(

√

2KD + πDσ

h
, 0
)

(3.9)

is claimed to be the optimal solution.

The economic order quantity, denoted as Q1, was considered the starting point to

run the iterative process in generating a sequence, say (Qn) such that the convergent

solution was found. From Equation (3.8), it is easy to show that the sequence (Qn) is

an increasing sequence. This paper implies that if (Qn) does has an upper bound then it

will converge to its least upper bound. On the other hand, if (Qn) has no upper bound,

then it will diverge to ∞. In this case, Gallego [3] failed to consider the inventory policy

when the sequence diverges to ∞.

In the following, we point out some questionable results in Equation (3.7) such that

if we follow Gallego [1], then we may divide it into two cases: (1) πD = 2hQ and

(3.2) πD > 2hQ. Alternatively, we derive a procedure to avoid the iterative algorithm

of Gallego. We first find a reasonable restriction (that is Q1 ≡
√

2DK/h < Q <
√

(2K + πσ)D/h ≡ M) and then under this reasonable restriction, we directly prove

that there is a unique optimal solution of Q that satisfies the Equation (3.8) (that is

Equation (4.10)).



MINIMAX DISTRIBUTION FREE PROCEDURE FOR INVENTORY MODELS 119

4. Improved Solution Procedure for the Inventory Model

Under the restriction πD ≥ 2hQ,
∂C(Q,∆)

∂∆
=0 yields that

∆√
∆2 + σ2

=
πD−2hQ

πD
.

After squaring both sides and applying cross-multiplication, it shows

∆2

σ2
=

(πD − 2hQ)2

(πD)2 − (πD − 2hQ)2
=

(πD − 2hQ)2

4hQ(πD − 2hQ)
. (4.1)

From Equation (4.1), it is easy to imply Equation (3.6). Using
∆√

∆2 + σ2
=

πD − 2hQ

πD

again, it can be obtained that πD(
√
∆2 + σ2 −∆) = 2hQ

√
∆2 + σ2, which then yields

√

∆2 + σ2 −∆=
2hQ

πD

√

∆2 + σ2 =
2hQ

πD

πD

πD − 2hQ
∆

=
2hQ

πD

πD

πD − 2hQ

(πD − 2hQ)σ

2
√

(hQ(πD − hQ))
. (4.2)

After carefully examining the previous results, it is not possible to Equation (3.7)
from Equation (4.1) under the restriction πD ≥ 2hQ. There has to be a stronger

condition such as πD > 2hQ, to be able to derive Equation (3.7). With this discovery,

this paper considered an alternative method to derive the optimal solution while avoiding
the convergent problem for the sequence in Gallego [1]. A possible range for Q was

determined and if this is considered as a function of ∆, then the following equation can

be derived from Equation (3.3):

Q(∆) =

√

2KD

h
+

πD

h
(
√

∆2 + σ2 −∆). (4.3)

The next section provides an alternative method to derive Equation (3.8), without

referring to equation (3.7).

From
∂C(Q,∆)

∂Q
= 0 and

∂C(Q,∆)

∂∆
= 0, it is possible to derive an equation that

contains only one variable Q. Using
∂C(Q,∆)

∂Q
= 0, it is known that

( h

D
Q2 − 2k

) 1

π
=

√

∆2 + σ2 −∆. (4.4)

By
∂C(Q,∆)

∂Q
= 0, it yields that

2hQ

πD
= 1− ∆√

∆2 + σ2
=

√
∆2 + σ2 −∆√

∆2 + σ2
(4.5)

Hence,
2hQ

πD
=

h

D
Q2 − 2k

π
√
∆2 + σ2

, and show that

2hQ
√

∆2 + σ2 = hQ2 − 2DK, (4.6)
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by substituting Equation (4.4) into Equation (4.6), it can be implied that

2hQ
[( h

D
Q2 − 2k

) 1

π

]

= hQ2 − 2DK. (4.7)

Subsequently, plugging Equation (3.6) into Equation (4.7) yields

2hQ(hQ2 − 2KD) +
πDQσ(πD − 2hQ)
√

hQ(πD − hQ)
= hQ2 − 2KD. (4.8)

To present a more compact form, Equation (4.8) is rewritten as

πDhQσ(πD − 2hQ)
√

hQ(πD − hQ)
= (hQ2 − 2KD)(πD − 2hQ). (4.9)

Under the stronger condition of πD > 2hQ for Q in some feasible range that will

be explained later, πD − 2hQ can be cancelled out from both sides of Equation (4.9).

Therefore, the solution for the system of the first partial derivatives is found as

πDσ

√

hQ

πD − hQ
+ 2KD = hQ2. (4.10)

Equation (4.10) proves that it is possible to derive the result of Equation (3.8)

without referring to Equation (3.7).

The next part explains the definition of a feasible range for the order quantity. Since

the feasible range for ∆ is 0 ≤ ∆ < ∞, from
√
∆2 + σ2 − ∆ =

σ2

√
∆2 + σ2 +∆

, it is

known that Q(∆) is a decreasing function of ∆ with its maximum value of Q(0) =
√

2KD + πDσ

h
= M and its inferior value of Q1 =

√

2KD

h
. This finding is summarized

in the following lemmas.

Lemma 1. Under the assumption that Q(∆) =

√

2KD

h
+

πD

h
(
√
∆2 + σ2 −∆) for 0 ≤

∆ < ∞, the maximum value is Q(0) =

√

2KD + πDσ

h
= M and the inferior value is

√

2KD

h
= Q1.

Proof. Q(∆) is defined in Equation (4.3) it is seen that Q(∆) decreases with respect to

∆ so the maximum value is Q(0) and the minimum value is

lim
∆→∞

Q(∆) = lim
∆→∞

√

[2KD

h
+

πD

h

( σ2

√
∆2 + σ2 +∆

)]

=

√

2KD

h
. (4.11)

Through Lemma 1, there is a sufficient criterion to guarantee that the solution for

the system of the first partial derivatives will satisfy the restriction in Equation (3.5).
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Lemma 2. If the criterion 2hM ≤ πD holds, then the maximum value of Q(∆) from

Equation (4.3) satisfies Equation (3.5).

Proof. After deriving that Q(∆) ≤ Q(0) = M and under the condition of 2hM ≤ πD,

2hQ(∆) ≤ πD is obtained, which is Equation (3.5) as proposed by Gallego [1].

Due to technical reasons, there has to be a criterion stronger than 2hM ≤ πD.

Therefore, the following observation is noted.

Observation 1. It can be claimed that 2hM < πD from a practical point of view.

(Numerical examination) Using the numerical examples of Gallego [1] the values of
2hM

πD
yield 0.16 and 0.13 indicating that 2hM < πD is supported. From a practical point of

view, Observation 1 may be valid.

To ensure reliability, a sensitivity analysis was done on Observation 1. Only one

parameter had varying values either increasing or decreasing up to 50%, for parameters:

K,σ,D and h. The original results of 2hM/πD = 0.16 and 0.13 are already known based

on Examples 1 and 2 of Gallego [1]. This paper proposes to rewrite as

2hM

πD
=

2

π

√

(2K + πσ)h

D
(4.12)

to imply that the results of sensitivity analysis of 2hM/πD will be within the interval

of [0.065, 0.320], where 0.065 = (0.13)0.5 and 0.320 = 0.16/0.5. After doing sensitivity

analysis, it is further proven that 2hM/πD < 1.

In the next sections, Observation 1 is assumed to hold true throughout the paper.

The results are summarized in the next lemma.

Lemma 3. Under the assumption of 2hM < πD, for order quantity Q between

√

2KD

h

= Q1 and

√

2KD + πDσ

h
= M , we have 0 < πD − 2hQ.

Proof. Observation 1 already shows that 2hM < πD. Lemma 1 provides that

√

2KD

h
=

Q1 < Q(∆) ≤ Q(0) = M . Hence, it can be derived that 2hQ < πD.

Motivated by Equation (4.10), solving Equation (4.10) is equivalent to solving

f(Q) = 0, with

f(Q) = (hQ2 − 2DK)2(πD − hQ)− hπ2σ2D2Q. (4.13)

Hence, it is derived that

f ′(Q) = 4hQ(hQ2 − 2DK)(πD − hQ)− h(hQ2 − 2DK)2 − hπ2σ2D2. (4.14)

and subsequently

f ′′(Q) = 4h(hQ2 − 2DK)(πD − 3hQ) + 8h2Q2(πD − hQ)2. (4.15)
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Equation (4.13) can then be rewritten as

f ′′(Q) = 4h(3hQ2 − 2DK)(πD − 2hQ) + 4h2Q(hQ2 + 2DK).

Using Lemma 3, f ′′(Q) > 0 for Q ∈ (Q1,M) can be obtained. Moreover, it is known

that f(Q1) = −hπ2σ2D2Q1 < 0 and f(M) = (πσD)2(πD − 2hM) > 0. On the other

hand, it implies that f ′(Q1) = −hπ2σ2D2 < 0 and

f ′(M) = 4hπσDM(πD − 2hM) + 4h2πσDM2 − 2h(πσD)2. (4.16)

Since, hM2 = 2AD + πσD > πσD, it can be implied that f ′(M) > 0. Combining these

results to conclude that f(Q) is convex for Q ∈ [Q1,M ] with f ′(Q1) < 0 and f ′(M) > 0

to imply that there is a point, denoted as Qmin that satisfies f ′(Qmin) = 0 such that

f(Q) decreases for Q ∈ [Q1, Qmin] and f(Q) increases for Q ∈ [Qmin,M ]. It further

yields Qmin where Qmin is the minimum for f(Q) with Q1 ≤ Q ≤ M . From f(Q1) < 0

and f(M) > 0, it shows that there exists a unique point, say Q∗, with f(Q∗) = 0. A

summary of these findings is presented in the next theorem.

Theorem 1. Under the constraint πD > 2hM , we prove that there is a unique Q∗ in

[Q1,M ] that satisfies the system of the first partial derivatives.

Proof. f(Q) is derived to be a convex function with minimum point Qmin. Using

f(Q1) < 0 and f(M) > 0 to yield f(Qmin) < 0 and f(M) > 0 with f(Q) increases for

Q ∈ [Qmin,M ]. There is indeed a unique point, say Q∗, that satisfies Qmin < Q∗ < M

and f(Q∗) = 0.

As previously mentioned, solving Equation (4.10) is equivalent to solving f(Q) = 0.

Equation (4.10) is proven to have a unique solution Q∗. Hence, (Q∗,∆∗) is the unique

solution for the first partial system, where ∆∗ is derived by Equation (4.1).

Corollary 1. This paper proves that the optimal solution of ∆, denoted as ∆∗ exists

and is unique.

Proof. Based on Equation (4.1), after obtaining the optimal solution of Q∗, then

∆∗

σ
=

√

πD − 2hQ∗

4hQ∗
(4.17)

that it is exists and is unique.

The results above prove there is a unique solution and as such, it is possible to avoid

the tedious procedure in proposed by Gallego [1] and can instead use a better procedure

to solve the convergent problem. Moreover, it is shown that under the observation

πD > 2hM , the degenerated case mentioned in Gallego [1] with Q∗ = M and ∆∗ = 0

will not happen.

For completeness, the following algorithm is provided to help researchers in finding

optimal solutions:
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Step 1. Solve f(Q) = 0, where f(Q) is Equation (4.11), and then denote the root as

Q∗.

Step 2. Solve ∆∗ by Equation (4.15).

Step 3. Solve C(Q∗,∆∗) by plugging Q∗ and ∆∗ in Equation (3.2).

5. Numerical Examples

To illustrate the proposed procedure, the same numerical examples in Gallego [1] are

used. In Example 1, K = 70, D = 10, 000, h = 0.6, µ = 300, σ = 40, and π = 1.5. With

the starting point, Q1

√

2KD

h
, executing the iterative algorithm of Gallego to derive the

sequence as is shown in Table 1.

Table 1: For Example 1 by Gallego [1] to derive the sequence.

Sequence Q1 Q2 Q3 Q4 Q5 Q6

Order quantities Q 1527.525 1608.862 1611.085 1611.145 1611.147 1611.147

Hence, after six steps of mathematical calculations, the optimal order quantity is Q∗ =

1611.147. The next step is to use the numerical analysis method with initial value

Q = 1, 600. Since

√

2KD

h
= 1527.525 and

√

2KD + πDσ

h
= M = 1825.742, it is

possible to directly solve the root for Equation (4.11), which yields 1611.147 as compared

to Q∗ = 1594 in Gallego [1].

In Example 2, K = 3.2, D = 220, h = 2.88, µ = 30, σ = 10.5, and π = 32. With the

starting point, Q1 =

√

2KD

h
, the iterative algorithm of Gallego [1] is then executed to

derive the sequence as follows.

Table 2: For Example 1 by Gallego [1] to derive the sequence.

Sequence Q1 Q2 Q3 Q4 Q5

Order quantities Q 22.111 54.232 65.993 69.023 69.743

Sequence Q6 Q7 Q8 Q9 Q10

Order quantities Q 69.911 69.950 69.959 69.961 69.961

Hence, after 10 steps of mathematical calculations, the optimal order quantity is

Q∗ = 69.961. The next step is to use the numerical analysis method in the proposed

procedure with initial value Q = 100. Since

√

2KD

h
= 22.111 and

√

2KD + πDσ

h
=

M = 161.727, a direct solution for finding the root of Equation (4.11) yields 69.961 as
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opposed to Q∗ = 69 in Gallego [1]. Based on two numerical examples above, it is evident

that the procedure can efficiently derive the optimal order quantity and thus making the

tedious iterative procedure of Gallego [1] to generate a convergent sequence unnecessary.

6. Direction for Future Research

One possible direction for future research is to provide a complete solution structure

that may contain the following two cases:

Case (i), when πD ≤ 2hQ, then the optimal solution occurs on the boundary with ∆∗ = 0

that is a patch work for what Gallego [1] overlooked: πD < 2hQ.

Case (ii), when πD > 2hQ, an analytical proof to show that the sequence generated by

Gallego [1] is convergent.

7. Conclusion

There are different demand types even for the same products because market situa-

tions are different and it is not easy to forecast the demand accurately. In order to keep

the service level, it becomes an important issue for decision makers to consider the safe

level of stocks that need to be prepared. Many scholars use minimax distribution-free

procedure to explore the varying demand and derive the optimal replenishment policy.

This study determined the criteria to guarantee that the limit of a convergent sequence

is a feasible solution. The solutions are illustrated by solving some examples, indicating

the accuracy and completeness of our procedure. Lastly, it is considered that

lim
∆→∞

Q(∆) < Q < min{Q(0), πD/2h} (7.1)

will be an interesting research topic in the future.
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