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Abstract

Compared with the general three-stage, the general two-segment, the well-known T-shape

and TABU500 algorithms, this paper proposes a novel algorithm to solve large-scale rectan-

gular packing problems efficiently. The algorithm in this paper can generate exactly rectan-

gular optimal same-shape strip two-segment layout. The algorithm not only meets practical

guillotine-cutting problems, but also is reasonable in computation time consuming. Firstly,

the algorithm uses dynamic programming recursion to generate optimal same-shape strips;

secondly, it solves knapsack problems to obtain the optimal same-shape strip two-segment

layout. The algorithm is tested on 62 large-scale benchmark problems. Experimental re-

sults show that the algorithm is efficient and the solutions of the algorithm are better than

conventional algorithms in solving large-scale two-dimensional cutting instances.

Keywords: Packing, cutting, same-shape strip, two-segment layout, dynamic program-

ming.

1. Introduction

Packing problem comes from engineering practice, which is an old and famous

problem, and mainly related to operations research, engineering technology, mathemat-

ics,computer science and logic. From the computation complexity theory, the packing

problem has been proven a typical NP-hard problem [1]−[3], [8, 9], [11, 12], [14]. The

two-dimensional layout problem is an important branch of packing problem. Rectangular

layout is often involved in the processing industry, which is the first step of the manu-

facturing process, and has direct relationship with improving utilization of raw materials

and reducing product cost.

This paper studies the unconstrained two-dimensional cutting (UTDC) problem: m

types of rectangular pieces are cut from stock plate L×W (length × width), the demand

of pieces is unconstrained. The objective is to find a cutting pattern that will maximize

the summation of area s of all smaller rectangular pieces. Let the length, width and area

of piece type i be li, wi and vi (the area of rectangular pieces), respectively, i = 1, . . . ,m.
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The objective is to find a layout that will maximize the summation of areas of all smaller

rectangular pieces.

Assume that a layout P includes di number of type i pieces; V is the layout area.

The mathematical model for the UTDC problem is:

V =
{

max
( m
∑

i=1
vidi

)

; P is a feasible pattern; di non-negative integers, i=1, 2, . . . ,m
}

Although exact algorithm exists for UTDC problem, the computation time cannot

be tolerated [3, 4]. Therefore, researchers usually resolve the problem by two ways: one

is specific layout, such as Hifi [10] proposed a general three-stage and two-stage layout,

Fayard [6] the general two segment layout, Cui [5] the famous T-shape layout; the other

method is heuristic algorithm for generating layout, and the results of such algorithms

are close to the general layout of exact algorithms, such as Alvarez [1] proposed a TABU

heuristic algorithm (TABU500).

This paper proposes the application of the same-shape strip two segment (SS-

2SEGMENT) layout in solving the UTDGC problem. The contents are arranged as

follows. Section 2 describes SS-2SEGMENT layouts. Section 3 presents the algorithm.

Section 4 summarizes the computational results. Section 5 gives the conclusions.

2. Fundamental concept of the SS-2SEGMENT layout

2.1. Piece

The piece direction is in the piece length direction. Assuming a given piece l×w the

piece is in the rectangular sheet L×W (length L, widthW ). There are two arrangements:

one is horizontal row, which the piece direction has the same direction of panel length

(X direction); the other is vertical row, which the piece direction has the same direction

of panel width (Y direction). Because each cut is always X or Y direction in the cutting

process, the piece direction can only be X or Y direction.

2.2. Strip in layout

Figure 1 shows three type of strips for generating layout, and the number indicates

the type of pieces. Where, the first is the general strip consisting of different width piece

(Figure 1a), the second is the uniform strip having the same width piece (Figure 1b),

and the third is the same-shape strip made of the same size piece in the same direction

(Figure 1c).

(a) The general strip (b) The uniform strip (c) The same-shape strip

Figure 1: Several kinds of strips.
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2.3. Section and segment in layout

The section consists of several same-shape strips. The X section comprises a series

of same-shape strips that are arranged horizontally from left to right, and the Y section

includes a series of same-shape strips that are arranged vertically from top to bottom,

each section contains same-shape strips of the same length and direction. Figure 2 shows

the section of the rectangular pieces, where, an arrow shows the boundary of the same-

shape strip. Figure 2a is X section consisting of two same-shape strip; Figure 2b is Y

section including three same-shape strips.

(a) The X section (b) The Y section

Figure 2: The sections of rectangular pieces.

The segment is of several sections. The X segment includes a series of Y sections

that are arranged horizontally from left to right, and the Y segment comprises a series

of X sections that are arranged vertically from top to bottom. Figure 3 shows segment,

where, an arrow shows the boundary of the sections. Figure 3a is X segment consisting

of two Y section, where, the left Y section consists of two same-shape strips (piece 2

and 15), and the right Y section includes three same-shape strips (piece 13, 1 and 8);

Figure 3b is Y segment consisting of two X section, where, the upper X section consists

of two same-shape strips (piece 5 and 1), and the bottom X section also includes two

same-shape strips (piece 1 and 3).

(a) The X segment (b) The Y segment

Figure 3: The segments of rectangular pieces.
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2.4. The SS-2SEGMENT layout

The SS-2SEGMENT layout is of two segments. Figure 4 indicates the types of SS-
2SEGMENT layout. On the one hand, when division cut is vertical, the layout is termed
as SSX-2SEGMENT; on the other hand, when division cut is horizontal, the layout is
referred as SSY-2SEGMENT. In the SSX-2SEGMENT layout, if both the two segments
are X segment, the layout is SSX-2SEGMENT-XX (Figure 4a1); if one segment is X
segment and the other is Y segment, the layout is SSX-2SEGMENT-XY (Figure 4a2); if
both the two segments are Y segment, the layout is SSX-2SEGMENT-YY (Figure 4a3).
The naming approach of SSY-2SEGMENT is the same as SSX-2SEGMENT.

(1) SSX-2SEGMENT-XX (2) SSX-2SEGMENT-XY (3)SSX-2SEGMENT-YY
(a) SSX-2SEGMENT layout

(1) SSY-2SEGMENT-XX (2) SSY-2SEGMENT-XY (3) SSY-2SEGMENT-YY
(b) SSY-2SEGMENT layout

Figure 4: The types of SS-2SEGMENT layout.

Figure 5 illustrates SSX-2SEGMENT layout and its cutting processes, the area 1
represents the borders of the segments, ‘2 denotes the borders of the section and 3 is the
borders of the same-shape strip. In the SSX-2SEGMENT-XX (Figure 5a), the left X
segment comprises two Y section, where, the first Y section includes three same-shape
strips (piece 4, 15 and 1), and the second Y section also consists of three same-shape
strips (piece 17, 3 and 24); the right X segment comprises two Y section, where, the first
Y section includes three same-shape strips (piece 26, 8 and 16), the second Y section
only consists of two same-shape strips (piece 1 and 12).

3. The Generating Algorithm for Optimal SS-2SEGMENT Layouts

It is assumed that both the plate and pieces have integral sizes, and the pieces
direction is fixed. The proposed approach for the SS-2SEGMENT layouts consists of
four steps.

Step 1. Determining the normal sets.

Step 2. Using dynamic programming recursion to determine the optimal same-shape
strips.
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(a) The SSX-2SEGMENT-XX layout

(b) The SSX-2SEGMENT-XY layout

(c) The SSX-2SEGMENT-YY layout

Figure 5: The SSX-2SEGMENT layout.

Step 3. Step3. Solving the knapsack problem of same-shape strips to obtain the optimal

sections and segments.

Step 4. Solving the knapsack problem of sections to obtain the optimal SSX-2SEGMENT

layout and the SSY-2SEGMENT layout.

Step 5. Determining the optimal SS-2SEGMENT layout.

3.1. Notations and functions

Some notations and functions are listed in Table 1. Most of them will be re-
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Table 1: Notations and functions.

L,W Length and width of the stock sheet

li, wi, vi Length, width and area of the ith rectangular piece, i = 1, 2, . . . ,m

P 1
(i), P

2
(i) The set of normal same-shape strip length and width

Q1
(i), Q

2
(i) The set of normal section length and width

P3 The set of normal segments

n(i)(x, y) The maximum number of the ith pieces in same-shape strip x× y

u(x, y) The maximum area of same-shape strip x× y

f1(x, y) The optimal area of the X section x× y

f2(x, y) The optimal area of the Y section x× y

g1(x, y) The area of X segment x×W

g2(x, y) The area of Y segment L× y

vSSX−2SEGMENT−XX The area of the optimal SSX-2SEGMENT-XX pattern

vSSX−2SEGMENT−XY The area of the optimal SSX-2SEGMENT-XY pattern

vSSX−2SEGMENT−YY The area of the optimal SSX-2SEGMENT-YY pattern

vSSY−2SEGMENT−XX The area of the optimal SSY-2SEGMENT-XX pattern

vSSY−2SEGMENT−XY The area of the optimal SSY-2SEGMENT-XY pattern

vSSY−2SEGMENT−YY The area of the optimal SSY-2SEGMENT-YY pattern

vSSX−2SEGMENT The area of the optimal SSX-2SEGMENT pattern

vSSY−2SEGMENT The area of the optimal SSY-2SEGMENT pattern

vSS−2SEGMENT The area of the optimal SS-2SEGMENT pattern

introduced where they are used for the first time. The readers can find it is more

convenient to look for the notations definitions in the table than in the text.

3.2. Three main normal sets

Many authors have used normal sets to develop algorithms for layouts [2]-[4],[9],

[11, 12]. This paper uses the normal sets as follows.

Definition 1. Normal sets of same-shape strips

According to 2.2 descriptions, the normal sets of same-shape strips is defined from

each piece. For piece type i, i = 1, . . . ,m, suppose P 1
(i) is the set of the same-shape strip

normal length, and P 2
(i) the set of the same-shape strip width

P 1
(i) = {x = zili; zi ∈ N ; 0 ≤ x ≤ L};

P 2
(i) = {y = ziwi; zi ∈ N ; 0 ≤ y ≤ L}.

The P 1
(i) = p11, p

1
2, . . . , p

1
M

represents the same-shape strip length normal size of piece,

and M is the number of normal size; and the P 2
(i) = p21, p

2
2, . . . , p

2
M

represents ith the
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same-shape strip width normal size of ith piece, and N is the number of normal size.

Definition 2. Normal sets of sections
According to 2.3 descriptions, the normal section length is the set of each piece

length, and the normal section width is the set of each piece width. Suppose Q1
(i) is the

set of the section normal length and Q2
(i) the set of the section normal width

Q1
(i) =

{

x =

m
∑

i=1

zili; zi ∈ N ; i = 1, . . . ,m; 0 ≤ x ≤ L
}

;

Q2
(i) =

{

y =
m
∑

i=1

ziwi; zi ∈ N ; i = 1, . . . ,m; 0 ≤ y ≤ W
}

.

The q11, q
1
2 , . . . , q

1
M

represents the section length normal size, and M is the number

of normal size; the q21 , q
2
2, . . . , q

2
M

represents the section width normal size, and N is the
number of normal size.

Definition 3. Normal sets of segments

According to 2.3 description, the segment consists of same direction sections, there-
fore, the normal segment length is the set of section normal length. Suppose P3 is the
set of segment normal length.

P3 = Q1
(i) =

{

x =
m
∑

i=1

zili; zi ∈ N ; i = 1, . . . ,m; 0 ≤ x ≤ L
}

.

Application of the above normal sets can be greatly reduced the amount of same-
shape strip, section and segment, which can greatly improve the efficiency of the algo-
rithm.

3.3. The generating algorithm for optimal same-shape strip

(1) Solving the maximum amount of piece in the same-shape strip x× y

Suppose that n(i)(x, y) is the maximum number of piece in the same-shape strip
x× y:

n(i)(x, y) = {int⌊x/li⌋ × int⌊y/wi⌋;x ∈ P 1
(i); y ∈ P 2

(i)}.

Above formula means that two paths may lead to the layout on x× y:
(i) As shown in Figure 6a, lay an X direction same-shape strip along the upper side

of rectangle x× (y − li). The strip is of length x× y and includes int⌊x/wi⌋ pieces.
The new rectangle x× y d contains n(i)(x, y − li) + int⌊x/wi⌋ pieces.

(ii) As shown in Figure 6b, lay an Y direction same-shape strip along the upper side

of rectangle (x− li)× y. The strip is of length x× y and includes int⌊y/wi⌋ pieces.
The new rectangle x× y d contains n(i)(x− li, y) + int⌊y/wi⌋ pieces.

(2) Solving optimal the same-shape strip x× y

Suppose that u(x, y) is piece area in the same-shape strip x× y:

u(x, y) = {max[n(i)(x, y)× vi];x ∈ P 1
(i); y ∈ P 2

(i)}.
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(a) (b)

Figure 6: Two paths lead to rectangle x× y. (a) From x× (y − li) and (b) From (x− li)× y.

3.4. The optimal layout same-shape strip on section

(1) Solving the maximum area X section x× y

Suppose that f1(x, y) is the maximum area X section x× y:

f1(x, y) =
{

max
[

M
∑

i=1

kiu(p
2
i , y)

]

;

M
∑

i=1

kip
2
i ≤ x; ki ∈ N,x ∈ Q1

(i), y ∈ Q2
(i)

}

. (3.1)

(2) Solving the maximum area Y section x× y

Suppose that f2(x, y) is the maximum area Y section x× y:

f2(x, y) =
{

max
[

N
∑

i=1

kiu(x, q
2
i )
]

;

N
∑

i=1

kiq
2
i ≤ y; ki ∈ N,x ∈ Q1

(i), y ∈ Q2
(i)

}

. (3.2)

Where, the ki is the number of the same-shape strips.

The solution of above knapsack problem can refer to [13].

3.5. The optimal layout section on segment

(1) Solving the maximum area X segment x× y

Suppose that g1(x, y) is the maximum area X segment x× y:

g1(x, y) =
{

max
[

N
∑

i=1

kif2(x, q
2
i )
]

;

N
∑

i=1

kiq
2
i ≤ y; ki ∈ N,x, y ∈ Q1

(i)

}

. (3.3)

(2) Solving the maximum area Y segment x× y

Suppose that g2(x, y) is the maximum area X segment x× y:

g2(x, y) =
{

max
[

M
∑

i=1

kif1(p
2
i , y)

]

;

M
∑

i=1

kip
2
i ≤ x; ki ∈ N,x, y ∈ Q1

(i)

}

. (3.4)
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3.6. The optimal SSX-2SEGMENT layout

(1) Solving the maximum area SSX-2SEGMENT

For SSX-2SEGMENT layout, x is the vertical cut line, x ∈ P3. There are three

layout types, SSX-2SEGMENT-XX, SSX-2SEGMENT-XY and SSX-2SEGMENT-YY.

Suppose that vSSX−2SEGMENT−XX, vSSX−2SEGMENT−XY and vSSX−2SEGMENT−YY are the

maximum area of the above layouts.

vSSX−2SEGMENT−XX =max[g1(x,W ) + g1(L− x,W )] (3.5)

vSSX−2SEGMENT−XY =max[g1(x,W ) + g2(L− x,W )] (3.6)

vSSX−2SEGMENT−YY =max[g1(x,W ) + g2(L− x,W )] (3.7)

Assemble vSSX−2SEGMENT is the maximum area of the SSX-2SEGMENT layout.

vSSX−2SEGMENT = max(vSSX−2SEGMENT−XX, vSSX−2SEGMENT−XY, vSSX−2SEGMENT−YY).

(3.8)

(2) Solving the maximum area SSY-2SEGMENT

For SSY-2SEGMENT layout, y is the horizontal cut line, y ∈ P3. There are three

layout types, SSY-2SEGMENT-XX, SSY-2SEGMENT-XY and SSY-2SEGMENT-YY.

Suppose that vSSY−2SEGMENT−XX, vSSY−2SEGMENT−XY and vSSY−2SEGMENT−YY are the

maximum area of the above layouts.

vSSY−2SEGMENT−XX = max[g1(L, y) + g1(L,W − y)] (3.9)

vSSY−2SEGMENT−XY = max[g1(L, y) + g2(L,W − y)] (3.10)

vSSY−2SEGMENT−YY = max[g2(L, y) + g2(L,W − y)] (3.11)

Assemble vSSY−2SEGMENT is the maximum area of the SSY-2SEGMENT layout.

vSSY−2SEGMENT = max(vSSY−2SEGMENT−XX, vSSY−2SEGMENT−XY, vSSY−2SEGMENT−YY).

(3.12)

(3) Solving the maximum area SS-2SEGMENT

Supposing vSS−2SEGMENT is the maximum area of SS-2SEGMENT layout.

vSS−2SEGMENT = max(vSSX−2SEGMENT, vSSY−2SEGMENT). (3.13)

4. Computational Results

To the best of our knowledge, the SS-2SEGMENT layout has never been reported.

In this section, the algorithm SS-2SEGMENTA is the algorithm for generating opti-

mal SS-2SEGMENT layout, and SS-2SEGMENTA compares with five efficient algo-

rithms through two groups benchmark problems. Suppose VSS−2SEGMENTA, V3STAGEA,

V2SEGMENTA, VT−shapeA, VTABU500A and VGENERALA is layout area of the above six algo-

rithms respectively. The problems of the first two groups are available on the internet at

[15]. The SS-2SEGMENTA is carried on a computer with Pentium 4 2.8GHz CPU and
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Table 2: Layouts and algorithms abbreviation.

Layout Name Layout abbreviation Layout algorithms abbreviation

Same-shape strip two segment layout SS-2SEGMENT SS-2SEGMENTA

General three stage layout [10] 3STAGE 3STAGEA

General two segment layout [6] 2SEGMENT 2SEGMENTA

General T-shape layout [5] T-shape T-shapeA

TABU500layout [1] TABU500 TABU500A

General layout [4] GENERAL GENERALA

512MB main memory. Various layouts and algorithms abbreviations are listed in Table

2.

(1) The first group problems

The first group includes 42 benchmark problems which are given in [10]. We compare

SS-2SEGMENT with general three stage layout, general two segment layout, general T-

shape layout, general two stage layout, TABU500 layout and general layout. Table 3

and Table 4 are the statistical results, and Table 5 is the calculated results. According

to section 1, general layout is the optimal general layout, the marker “N” denotes that

the layout area is equal to that of the optimal general layout in Table 5. We can draw

conclusions:

(a) The SS-2SEGMENTA results are equal or very close to those of the GENERALA.

(b) The layout area of SS-2SEGMENT are better than 3STAGE, 2SEGMENT and T-

shape.

Therefore, compared to current layouts, the SS-2SEGMENT can improve material

usage efficiently.

Table 3: Number of problems of different layouts in optimal results (42 problems).

Layout Type SS-2SEGMENT 3STAGE 2SEGMENT T-Shape

Number of optimal solutions
38 32 32 31

(out of 42)

Table 4: Number of problems better or equal in different layouts (42 problems).

3STAGE 2SEGMENT T-Shape
better equal better equal better equal

SS-2SEGMENT 8 34 9 33 10 32
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Table 5: Computational results of different layout patterns (42 problems).

ID VGENERALA VSS−2SEGMENTA V3STAGEA V2SEGMENTA VT−ShapeA

H 12,348N N 12,192 12,192 12,132
HZ1 5,226N N N N N

M1 15,024N N N N N

M2 73,176N N 72,564 72,564 72,564
M3 142,817N N N N N

M4 265,768N N N N N

M5 577,882N N N N N

B 8,997,780N N N N N

U1 22,370,130N 22,363,541 22,351,950 22,351,950 22,351,950
U3 48,142,840N 48,095,058 48,095,058 48,042,264 48,029,748
UU1 242,919N N 241,260 241,260 241,260
UU2 595,288N N N N N

UU3 1,072,764N N N N N

UU4 1,179,050N 1,178,295 1,178,295 1,178,295 1,178,295
UU5 1,868,999N N 1,868,985 1,868,985 1,868,985
UU6 2,950,760N N N N N

UU7 2,930,654N N N N N

UU8 3,959,352N N N N N

UU9 6,100,692N N N N N

UU10 11,955,852N N N N N

UU11 13,157,811N 13,147,305 13,146,050 13,141,175 13,127,726
HZ2 8,226N N N N N

MW1 3,882N N N N N

MW2 24,950N N N N N

MW3 37,068N N N N N

MW4 59,576N N N N N

MW5 189,924N N N N N

BW 2,307,817N N N N N

W1 162,867N N N N 161,424
W2 35,159N N 34,656 34,656 34,656
W3 234,108N N N N N

UW1 6,036N N N N N

UW2 8,468N N N N N

UW3 6,302N N 6,226 6,226 6,226
UW4 8,326N N N N N

UW5 7,780N N N N N

UW6 6,615N N N N N

UW7 10,464N N N N N

UW8 7,692N N N N N

UW9 7,038N N N N N

UW10 7,507N N N N N

UW11 15,747N N N N N
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From Table 4, we can see that:

There are 8 problems that the SS-2SEGMENT layout is better than 3STAGE, 9

problems for and 2SEGMENT and 10 problems for T-shape; the other problems are

equal to above tree layouts.

The computation time of SS-2SEGMENTA is 0.399s, which is reasonable in practical

application. Because there is no description of the time for above algorithms, so, we do

not compare in time.

(2) The second group problems

The second group includes 20 benchmark problems which are given in [1]. We

compare SS-2SEGMENT with TABU500 layout and general layout. Table 4 to Table 6

is the statistical results, and Table 4 to Table 7 is the calculatedresults. We can draw

conclusions:

Table 6: Number of problems better than different algorithms (20 problems).

TBAU500A

better equal

S-2SEGMENTA 16 3

Table 7: Computational results of different layout patterns (20 problems).

ID VGENERALA Vss−2SEGMENTA VTABU500A

APT10 3,589,703 3,589,455 3,585,450

APT11 4,188,915 4,187,668 4,148,798

APT12 5,156,065 5,153,818 5,137,069

APT13 3,498,302 3,495,944 3,483,722

APT14 4,463,550 N N

APT15 6,047,188 6,044,283 5,997,899

APT16 7,566,719 7,560,189 7,513,717

APT17 4,535,302 4,535,262 4,512,417

APT18 5,825,956 5,820,472 5,759,831

APT19 6,826,674 6,825,808 6,763,810

APT20 5,545,818 5,532,197 5,521,885

APT21 3,484,406 N N

APT22 4,145,317 4,140,487 4,116,075

APT23 3,546,535 3,539,116 3,535,623

APT24 3,948,037 3,943,235 3,939,485

APT25 3,507,615 N 3,500,380

APT26 2,683,689 2,664,507 2,656,729

APT27 2,438,174 N 2,435,046

APT28 4,065,011 4,055,181 N

APT29 3,652,858 N N
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(a) The SS-2SEGMENTA results are equal or very close to those of the GENERALA.

(b) Among 20 problems, there are 16 problems that the SS-2SEGMENT layout is better

than TABU500, 3 problems are equal to TABU500, and 1 is worse than TABU500.

The computation time of SS-2SEGMENTA is 2.031s, which is reasonable in practical

application. Because there is no description of the time for TABU500, so, we do not

compare in time.

5. Conclusions

Despite exact algorithm for large-scale UTDGC problems exists, but its computa-

tional complexity is unknown. According to practical results show that this algorithm in

solving large-scale problems cannot be tolerated in calculation time. Usually researchers

use specific layouts, which can solve the problem effectively within reasonable time. We

propose specific layout SS-2SEGMENT, and we compare the SS-2SEGMENT with the

general three-stage, two segment, T-shape and TABU500 layout, and the computation

results show that the SS-2SEGMENTA can effectively improve sheet utilization and

calculation time is reasonable in practical application.

Acknowledgements

This research was supported by the National Natural Science Foundation of China

(No. 51575302), Natural Science Foundation of Beijing (No. G170005) and Natural

Science Foundation of Beijing Polytechnic (No. YZKB2015008, No. YZK2016031).

References

[1] Alvarez, V. R., Parreo, F. and Tamarit, J. M. (2007). A TABU search algorithm for a two-
dimensional non-guillotine cutting problem, European J. of Operational Research, Vol.183, 1167-
1182.

[2] Cui, Y. (2011). A recursive branch-and-bound algorithm for constrained homogenous T-shape cutting
patterns, Applied Mathematical Modelling, Vol.54, 1320-1333.

[3] Cui, Y. and Zhang, X. (2007). Two-stage general block patterns for the two-dimensional cutting
problem, Computers & Operations Research, Vol.34, 2882-2893.

[4] Cui, Y., Wang, Z. and Li, J. (2009). Exact and heuristic algorithms for staged cutting problems, J.
of Engineering Manufacture, Vol.219, 201-208.

[5] Cui, Y. (2004). Generating optimal T-shape cutting patterns for rectangular blanks, J. of Engineering
Manufacture, Vol.218, 857-866.

[6] Fayard, D. and Zissimopoulos, V. (1995). An approximation algorithm for solving unconstrained
two-dimensional knapsack problems, European J. of Operational Research, Vol.84, 618-632.

[7] Gilmore, P. C. and Gomory, R. E. (1965). Multistage cutting problems of two and more dimensions,
Operations Research, Vol.13, 94-119.

[8] Han, W., Bennell, J. A. and Zhao, X. Z. (2013). Construction heuristics for two-dimensional irregular
shape bin packing with guillotine constraints, European J. of Operational Research, Vol.230, 495-504.

[9] Hifi, M. and Saadi, T. (2010). A parallel algorithm for two-staged two-dimensional fixed-orientation
cutting problems, Computational Optimization and Applications, Vol.7, 783-807.

[10] Hifi, M. (2001). Exact algorithm for large-scale unconstrained two and three staged cutting problems,
Computers Optimization and Application, Vol.18, 63-88.



204 JUN JI, WEN-ZENG ZHANG, FEI-FEI XING AND YAO-DONG CUI

[11] Ji, J., Xing, F. F., Du, J., Shi, N., et al. (2014). A deterministic algorithm for generating optimal
three-stage layouts of homogenous strip, J. of Industrial Engineering and Management, Vol.7, 1167-
1168.

[12] Ji, J., Lu, Y., and Cha, J. (2012). An exact algorithm for large-scale unconstrained three staged
cutting problems with same-size block requirement, International J. Information and Management
Sciences, Vol.23, 59-78.

[13] Kellerer, H., Pferschy, U. and Pisinger, D. (2004). Knapsack Problems, Springer, Berlin.

[14] Morabito, R. and Vitria P. R. (2010). A heuristic approach based on dynamic programming and
and/or-graph search for the constrained two-dimensional guillotine cutting problem, Annals of Op-
erations Research, Vol.179, 297-315.

[15] http://www.laria.u-picardie.fr/hifi/OR-Benchmark/, 2017-06-12.

School of Mechanical, Electronic Engineering, Beijing Polytechnic, Beijing 100176, China.

E-mail: ji jun2000@sina.com

Major area(s): Optimization and Computation Techniques, Computer added design.

Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

E-mail: wenzeng@tsinghua.edu.cn

Major area(s): Robotics, Mechanical design and manufacturing, robotic hands, visual inspection.

School of Mechanical, Electronic Engineering, Beijing Polytechnic, Beijing 100176, China.

E-mail: xingfeifei@126.com

Major area(s): Intelligence design and layout.

School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China.

E-mail: 08116293@bjtu.edu.cn

Major area(s): Optimization and computation techniques, computer added design.

(Received June 2017; accepted April 2018)


