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Abstract

Aiming at the problem of early weak fault of non-stationary vibration signal in the

background of complicated and heavy noises, a rolling bearing fault diagnosis technology

based on multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) and

improved empirical wavelet transform (IEWT) is proposed. First, the acquired signal is

analyzed by multipoint kurtosis (Mkurt) to obtain the approximate period of the signal and

according to the obtained period, a reasonable period interval is determined. Using denoised

method based on MOMEDA is to extract the periodic impulse of the original signal. Second,

by using IEWTmethod, the denoised signal can be decomposed into number of intrinsic mode

functions (IMFs). Finally, the IMFs are used the maximum kurtosis criterion for screening

sensitive component, and then using Hilbert envelope spectrum analysis identifies the type

of fault to achieve fault diagnosis. The experimental result shows that the proposed method

can effectively improve the performance of fault diagnosis of rolling bearing.

Keywords: Rolling bearing, MOMEDA, EWT, non-stationary vibration signal, envelope

spectrum.

1. Introduction

The rolling bearings are mechanical parts widely used in rotating machinery, its

diagnosis will bring about equipment abnormal vibration and noise, and even unexpected

accident proposed by Shi [10]. Therefore, the fault diagnosis of rolling bearing has been

valued all the time. In the early detecting stage of heavy noise and weak fault of the

bearings, Ma et al. [5] combine with the principle of Morlet wavelet transform and

propose a method of determining the optimal scale parameters from the scale-related

power distribution, which provides an effective way to extract the feature of early weak

fault signals in the bearing. Ren et al. [8] propose an early bearing fault diagnosis

based on dual-tree complex wavelet transform adaptive Teager energy spectrum and the

effectiveness of the proposed method is verified by simulation and experimental data.

These methods all contribute to the diagnosis and research of early bearing fault.
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Wang et al. [12] discussed that the denoised methods which are commonly used in

fault diagnosis include band-pass filter, morphological filtering, wavelet denoising and

empirical mode decomposition (EMD). Among them, the wavelet denoising is widely

used in the field of signal processing due to its multi-resolution characteristics. Hu et

al. [3], Wang et al. [15] and Ma et al. [6] use wavelet denoising for the feature extrac-

tion of early weak faults in rolling bearings, but the wavelet basis and the selection of

decomposition scale are not adaptive and difficultly apply to complicated signals. The

EMD is a completely adaptive method proposed by Li et al. [4]. Aiming at the end

effects of EMD, Shi et al. [9] proposed an improved method of combining waveform

feature matching extension with cosine window function, which is better to restrain the

end effects. Zhang et al. [16] firstly decomposed the weak fault signals into intrinsic

mode functions (IMFs) by using EMD, and then used the sliding kurtosis algorithm to

process the IMFs and extract the fault feature frequency, and ultimately achieve satis-

factory results. Although many improvements have been made, there exists still some

problems such as modal mixing, under-envelope, over-envelope and end effects in the

EMD. Therefore, Gilles [2] put forward a new adaptive signal processing method called

empirical wavelet transform (EWT) based on the framework of the wavelet transform

and EMD. The advantages of the method not only lie in the ability of constructing

suitable orthogonal wavelet filter banks, segmenting the Fourier spectrum of the signal

and extracting the amplitude modulated-frequency modulated (AM-FM) components

with compact support, but also there exists no mode mixing, and the negative frequency

caused by Hilbert transform, etc. However, Zheng et al. [18], Shi et al. [11] and Wang et

al. [13] all argued that the spectrum segmentation which is required by EWT strongly

relies on local maxima of its amplitudes and spends a lot of calculation time. Hence,

an improved empirical wavelet transform (IEWT) is proposed. The new segmentation

approach performs envelope analysis on the Fourier spectrum of the signal. Then the

frequency which corresponds to the local minima point of the envelope is marked, that

is the locations of the spectrum segmentation boundaries.

However, the weak fault signals are often overwhelmed by heavy noise and other

strong vibration components, which leads to less obvious fault feature in the IMFs.

Therefore, it is particularly important how to effectively reduce the interference of heavy

noise and highlight faulty feature. McDonald and Zhao [7] proposed a denoised method

based on MOMEDA. This method is suitable for periodic fault feature extraction. The

approximate period of fault is determined by multipoint kurtosis (Mkurt), and then

setting a reasonable period interval is to effectively extract the periodic impulse over-

whelmed by heavy noise and other strong vibration components, and thus, this method

reduces noise and improves the original signal kurtosis, this method was also discussed

by Wang et al. [14].

Based on above discussions, this paper proposes a bearing fault diagnosis method

based on MOMEDA and IEWT. The experimental results show that the noise can be well

suppressed, and the faulty feature can be effectively extracted by the proposed method.

The remainder of this paper is organized as follow. In Section 2, the algorithms

of the MOMEDA and EWT method are briefly reviewed. Then, the IEWT method is
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proposed for well segmenting the Fourier spectrum of the signal. Section 3 describes
the algorithm flow of the proposed method in detail. Section 4 performs the simulation
study based on two signals, and the IEWT method is compared with the EMD and EWT
method. In Section 5, the proposed method is applied for fault diagnosis of the inner
race of the bearing. Section 6 summarizes the conclusions in this paper.

2. Theoretical Study

2.1. Multipoint optimal minimum entropy deconvolution adjusted technique

Cabrelli and Carlos [1] defined a new criterion for the varimax norm: the D-norm,
which is obtained through the modification of the kurtosis norm when multiple data
inputs. The D-norm deconvolution problem is non-iterative solution for computing the
filter coefficients. Therefore, McDonald proposed a deconvolution algorithm called MO-
MEDA based on multi D-norm (MDN) for the target recognition of multiple impulses.
The algorithm is mainly applied to the fault feature extraction of periodic impulses.

When the bearing occurs the fault, given an acquired discrete signal:

y(n) = h(n) ∗ x(n) + e(n) (2.1)

where e(n) is the white noise, x(n) is an impulse train modeling a fault, h(n) is the
transfer function and y(n) is the acquired vibration signal.

The MOMEDA algorithm proposed by McDonald is to find a FIR filter w(l) and
to make the impulse train x(n) restore the input signal y(n) as much as possible. The
core of the algorithm is to recognize the goal impulses at known locations. Hence, we
introduce this maximization problem as the MOMEDA:

MDN(y, t) =
1

‖t‖

tTy

‖y‖
(2.2)

max MDN(y, t) = max
f

tTy

‖y‖
(2.3)

where the above t is a constant vector that determines location and weighting of the goal
impulses.

Through taking the derivative of filter coefficients (f = f1, f2, . . . , fL) to get the
extrema of Eq. (2.3):

d

df

(tTy

‖y‖

)

=
d

df

t1y1
‖y‖

+
d

df

t2y2
‖y‖

+ · · ·+
d

df

tN−LyN−L

‖y‖
(2.4)

Since
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df

tkyk
‖y‖

= ‖y‖−1tkMk − ‖y‖−3tkykX0y and Mk =











xk+L−1

xk+L−2
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, Eq. (2.4) can

be written:

d

df

(tTy

‖y‖

)

= ‖y‖−1(t1M1 + t2M2 + · · ·+ tN−LMN−L)− ‖y‖−3tTyX0y. (2.5)
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With the simplification,

t1M1 + t2M2 + · · ·+ tN−LMN−L = X0t.

And solving the extrema by equaling to 0, Eq. (2.5) becomes:

‖y‖−1X0t− ‖y‖−3tTyX0y = 0.

That is
tTy

‖y‖2
X0y = X0t.

Since y = XT
0 f and assuming (X0X

T
0 )

−1 exists:

tTy

‖y‖2
f = (X0X

T
0 )

−1X0t. (2.6)

Since multiples of f are also the solutions to Eq. (2.6), multiples of f = (X0X
T
0 )

−1X0t

are solutions to the MOMEDA problem.
The MOMEDA filter and output solutions can be simply summarized as:

f = (X0X
T
0 )

−1X0t (2.7)

X0 =















xL xL xL+2 · · · xN
xL−1 xL xL+1 · · · xN−1

xL−2 xL xL · · · xN−2

...
...

...
. . .

...

x1 x2 x3 · · · xN−L+1















. (2.8)

y = XT
0 f . (2.9)

t has the same length as the output N − L + 1, and represents the location and
weighting of the deconvolution impulses in the output. The MOMEDA method obtains
the non-iterative optimal solution, which provides the basis for the periodic fault diag-

nosis of rotating machinery. The MOMEDA method can be calculated for M contiguous
target vectors t1, t2, . . . , tM . In this case, Eq. (2.7) and Eq. (2.9) become Eq. (2.10) and
Eq. (2.11).

F = [f1f2 · · · fM ] = (X0X
T
0 )

−1X0[t1t2 · · · tM ] (2.10)

Y = [y1y2 · · ·yM ] = XT
0 F. (2.11)

Due to MOMEDA denoised method, the location of deconvolution impulse is uniquely
determined. In the whole sampling interval, there only exists an impulse each period.
In the background of heavy noise, in order to further extract the impulses, the location

of deconvolution impulse can be accurately controlled by setting the interval of the de-
noised period. Therefore, the multipoint kurtosis (Mkurt) is introduced as the measure
of faulty feature extraction, the unnormalized Mkurt is defined as follow:

Mkurt(y, t) = k

N−L
∑

n=1

(tnyn)
4

(N−L
∑

n=1

y2n

)2
. (2.12)



ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON MOMEDA AND IEWT 349

When output y is equal to target vector t, the Mkurt gets normalized as:

k

N−L
∑

n=1

(t2n)
4

(N−L
∑

n=1

t2n

)2
= 1. (2.13)

Get the normalization factor:

k =

(N−L
∑

n=1

t2n

)2

N−L
∑

n=1

t8n

. (2.14)

Finally, the normalized Mkurt is described as follows:

Mkurt =

(N−L
∑

n=1

t2n

)2

N−L
∑

n=1

t8n

N−L
∑

n=1

(tnyn)
4

(N−L
∑

n=1

y2n

)2
. (2.15)

This definition is based on kurtosis, but its target vector is expanded into multiple

impulses at the controlled location and further normalized.

2.2. Empirical wavelet transform

The purpose of EMD is to decompose the signal f(t) into sum of N + 1 IMFs fk(t)

such that:

f(t) =
N
∑

k=0

fk(t). (2.16)

An IMF is defined as AM-FM function which is described as follow:

fk(t) = Fk(t) cos(Φk(t)), Fk(t) > 0, Φ′
k(t) > 0. (2.17)

The change rate of Fk(t) and φk(t) is slower than φk. In the EMDmethod, what is the

most interest is how to adaptively select the AM-FM component from the original signal

fk(t). The classic EMD method results in the mode mixing and end effect due to the

unreasonable stop criteria, upper and lower envelope problems. Moreover, the screening

process of the EMDmethod also lacks of mathematical theory. To overcome this problem,

Gilles combined the wavelet transform with the adaptive EMD, and proposed the EWT

method. This method is based on the theoretical framework of wavelet analysis and

selects a set of wavelet filter banks to adaptively extract the different AM-FM components

according to the Fourier spectrum of the signal. To select a suitable wavelet filter bank,

the Fourier spectrum needs to be adaptively segmented. Assume that the Fourier support

[0, π] is segmented into N continuous segments. We denote ωn to be the boundary limits
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between each segments (ωn = 0, ωN = π), the ωn is chosen as the midpoint between two
adjacent maxima for the signal Fourier spectrum, As shown in Figure 1, each segments
can be expressed as follow:

{

Λn = [ωn−1, ωn], n = 1, 2, . . . , N
⋃N

n=1Λ = [0, π]
(2.18)

Figure 1: The Spectrum Segmentation.

Centered on each and the width Tn is equal to 2τn, a transition phase is defined, as
shown in the shaded area in Figure 1.

After determining the segmentation interval Λn, the empirical wavelets are defined
as the bandpass filters on each Λn. Gilles constructed the empirical wavelets based on
the construction method of Meyer wavelet, the empirical wavelets function ψ̂n(ω) and
empirical scaling function ϕ̂n(ω) are defined as follows:

ψ̂n(ω) =



























1, (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[π

2
β
( 1

2γωn+1

(|ω| − (1− γ)ωn+1)
)]

, (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[π

2
β
( 1

2γωn

(|ω| − (1− γ)ωn)
)]

, (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

(2.19)

ϕ̂n(ω) =















1, |ω| ≤ (1− γ)ωn

cos
[π

2
β
( 1

2γωn

(|ω| − (1− γ)ωn)
)]

, (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

(2.20)

Where:

β(x) = x4(35− 84x+ 70x2 − 20x3) (2.21)

τn = γωn and γ < minn

(ωn+1 − ωn

ωn+1 + ωn

)

. (2.22)

Reference to the construction method of classic wavelet transform, the detail coeffi-
cients are defined as followed:

W ε
f (n, t) = 〈f, ψn〉 =

∫

f(τ)ψn(τ − t)dτ =
(

f̂(ω)ψ̂n(ω)
)∨

(2.23)
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W ε
f (0, t) = 〈f, φ1〉 =

∫

f(τ)φ1(τ − t)dτ =
(

f̂(ω)φ̂1(ω)
)∨

(2.24)

where ψ̂n(ω) and φ̂1(ω) represent the Fourier transform function of ψn(t) and φ1(t),

respectively. ψn(ω) and φ1(t) represent complex conjugate function of ψn(t) and φ1(t),

respectively. 〈 , 〉 is defined as the inner product.

As a result, the reconstruction of the signal f(t) is obtained as follow:

f(t) =W ε
f (0, t) ∗ φ1(t) +

N
∑

n=1

W ε
f (n, t) ∗ ψn(t)

=
(

Ŵ ε
f (0, ω)φ̂1(ω) +

N
∑

n=1

Ŵ ε
f (n, ω)ψ̂n(ω)

)∨

. (2.25)

The signal f(t) is decomposed into AF-FM component fj(t) (j = 0, k; k = 1, 2, 3, . . .)

by the EWT method which can be written in the form:

fj=0(t) =W ε
f (0, t) ∗ φ1(t) (2.26)

fj=k(t) =W ε
f (k, t) ∗ φk(t) (2.27)

where ∗ is convolution calculation operator.

2.3. Improved Empirical Wavelet Transform

Based on EWT theoretical framework and upper envelope analysis, the IEWT al-

gorithm is proposed, which can adaptively segment the Fourier spectrum of the signal.

Firstly, the new segmentation approach performs upper envelope analysis on the spec-

trum of the signal. Then the frequency which corresponds to the local minima point of

the envelope is marked, that is the locations of the spectrum segmentation boundaries.

Finally, the Meyer wavelet filtering is performed on the segmentation region. Such a

spectrum segmentation method does not require extensive calculation time. For exam-

ple, assuming the vibration signal x(t), Its IEWT method can be implemented through

the following steps:

(1) Construct the Fourier transform of x(t), such that

F (s) = |fft(x)| (2.28)

(2) Know the Fourier function F (s) from step (1), in the interval [0, f ], look for N + 1

nodes, 0 = f0 < f1 < · · · < fn = f and fi
0≤i≤n

6∈ (fp −mpd, fp +mpd), where f is

the sampling rate, fi is the node frequency, fp is the local peak frequency, mpd is

the minimum peak distance which ignores the smaller meaningless peaks that may

be generated nearly local larger peaks.

(3) Via these nodes, using the spline interpolation method is to generate the upper

envelope curve of the Fourier spectrum.
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(4) Find the minima point of the envelope curve as the locations of the spectrum seg-

mentation boundaries, that is ωi = [ω0, ω1, . . . , ωN ].

(5) According to the segmented frequency band, applying the Meyer wavelet construction

method in EWT theory is to construct the empirical wavelet which realizes the mode

decomposition.

This method does not need to set the number of segmentations of the Fourier spec-

trum in advance and saves a lot of calculation time, and was verified by Zhu and Feng

[19]. Only through the minima points of the envelope curve, can it effectively segment

the spectrum.

3. Diagnostic Algorithm Design

Based on the above analysis, in order to enhance the fault feature extraction, an early

fault diagnosis method of rolling bearing based on MOMEDA and IEWT is proposed.

The algorithm is designed as follows:

(1) Calculate the Mkurt of the fault signal and determine the approximate period of the

fault, and then set a reasonable fault period interval.

(2) The MOMEDA denoised method is used to extract the impulse components of the

fault signal for enhancing the fault feature.

(3) The IEWT method is used to realize the adaptive mode decomposition of the vibra-

tion signal for obtaining significant multiple component signals.

(4) Perform kurtosis analysis for the decomposed multiple component signal and select

the largest component of kurtosis.

(5) The screened sensitive component is analyzed by Hilbert envelope spectrum and

bearing fault feature is identified by the acquired spectrum.

4. Simulation Study

To verify the feasibility and effectiveness of the proposed method, the simulation

signal x1(t) and x2(t) are constructed, and compared with the EMD and EWT methods,

respectively.

4.1. Simulation signal x1(t)

The simulation signal x1(t) is composed of three constitutes, including the sinusoidal

signal x11(t), the AM-FM signal x12(t) and x13(t). The signal time-domain waveforms

are shown in Figure 2, the sampling frequency is 2000Hz, the sampling time is 1s, such

that






















x11(t) = sin(50πt)

x12(t) = (1 + sin(10πt)) sin(200πt + cos(20πt))

x13(t) = (1.5 + sin(10πt)) sin(400πt + cos(20πt))

x1(t) = x11(t) + x12(t) + x13(t).

(4.1)
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Figure 2: The Time-domain waveforms of the simulation signal.

For the comparison, firstly, the EWT method is used to segment the Fourier spec-

trum, the number of spectrum segmentation is 4, as shown in Figure 3(a). According

to the peaks of the spectrum, the EWT respectively decomposes the signal x11(t) and

x12(t) into single component, but the signal x13(t) is decomposed into two components

due to fitting errors, which resulting in appearing the false components. The decomposi-

tion result is given in Figure 3(b), in which the result has some differences from the true

components.

(a) (b)

Figure 3: (a) The EWT spectrum segmentation; (b) The EWT decomposition result.

Then, the signal x1(t) can be completely decomposed into the three components by

using IEWT adaptive spectrum segmentation method as shown in Figure 4(a), it can

be clearly seen from the figure that the Fourier spectrum is adaptively segmented into

three parts by IEWT method according to the upper envelope area, and determined two

spectrum segmentation boundaries. The frequency center the decomposition result is

25Hz, 100Hz and 200Hz, corresponding to the true components x11(t), x12(t) and x13(t),

respectively. The Figure 4(b) shows the decomposition result of the IEWT method.
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(a) (b)

Figure 4: (a) The IEWT spectrum segmentation; (b) The IEWT decomposition result.

To be compared with IEWT method, Figure 5(a) shows the multiple component

obtained by the EMD method. The EMD obtains the twelve IMFs, due to space limita-

tions, this article only lists the first six mode components. It can be found that the later

IMFs are false components. Moreover, the Fourier transform is employed for IMF1, and

the result of frequency-domain is shown in Figure 5(b). We can see that from Figure

5(b) there exists serious mode mixing problems, which is not favorable to fault feature

extraction.

(a) (b)

Figure 5: (a) The EMD decomposition result; (b) The frequency-domain result of IMF1.

In summary, The IEWT method can adaptively decompose the signals, eliminate

mode mixing and retain sideband information, which is suitable for fault diagnosis of

rolling bearings.
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4.2. Simulation signal

The simulation signal x2(t) uses Randall’s rolling bearing model to simulate the

pitting fault in the bearing inner race, this model was used by Zhao and Li [17]. To

facilitate the analysis, in the establishment of the bearing AF-FM vibration signal model,

only considering the bearing fault feature frequency, so given the simplified model of the

bearing vibration signal can be written as:







x2(t) =
M
∑

i=1

p(t− iT ) + n(t)

p(t) = e−Ct cos(2πft)

(4.2)

where M is the number of the periodic impulses; T is the period of the impulses; p(t)

is the oscillating waveform generated by a single impulse; the resonance frequency f

of the bearing is 4000Hz; the attenuation coefficient C is equal to the constant of 800,

the determined value relates to the bearing type; the sampling frequency fs is 20KHz;

The fault frequency of the bearing inner race fi = fs/T = 50Hz; n(t) is an additive

background noise, the signal-to-noise ratio(SNR) is -15dB.

According to the above model, the simulation signal of the bearing inner race fault

is generated, Figure 6(a) shows the waveform of the fault impulse and Figure 6(b) shows

the simulation signal of additive noise. Compared Figure 6(a) and Figure 6(b), it can

be clearly seen that when the heavy noise appears, the information of the impulse is

almost completely overwhelmed. The Hilbert envelope spectrum analysis is applied for

the simulation signal and the results is shown in Figure 7. It can be seen that there exists

almost obvious amplitude component in the envelope spectrum, so the fault features of

the bearing inner race cannot be effectively extracted.

(a) (b)

Figure 6: (a) The fault impulse; (b) The simulation signal of additive noise.

The fault signal x2(t) has been overwhelmed by heavy background noise so the

denoised method is proposed. To determine the approximate period of the impulse
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Figure 7: The envelope spectrum of the simulation signal.

signal, the Mkurt is performed. The result is shown in Figure 8(a). The peaks occur

at the locations of periods 80, 100, 133, 200, 400 and 800, respectively corresponding to

1/5, 1/4, 1/3, 1/2 and integer multiples of the impulses period. To further extract the

impulses, a reasonable period interval [390-410] is set according to the estimated period.

The MOMEDA denoised method is performed on the simulation signal, and then the

IEWT method is performed to decompose the denoised signal into meaningful IMFs.

Figure 8(b) is the result of the adaptive spectrum segmentation. It can be seen from

the figure that the Fourier spectrum is segmented into fourteen parts in which each part

corresponds to a single component.

(a) (b)

Figure 8: (a) The result of the Mkurt; (b) The spectrum segmentation based on MOMEDA and
IEWT.

Figure 9(a) shows the decomposition result of the IEWT method, due to space

limitations, this paper lists only the first six components of the maximum kurtosis value,

the imf1-to-imf6 kurtosis value are given in Table 1. It can be seen from the table that

the kurtosis value of the imf4 components is the largest. Selecting IMF4 components

as a sensitive component is to further perform Hilbert envelope spectrum analysis, the

results is shown in Figure 9(b), in which the amplitude of the fault frequency fi and its
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frequency multiplication (labeled as 2fi, 3fi, 4fi and 5fi) are all very large, fault features
are well extracted.

Table 1: The kurtosis value.

IMF Imf1 Imf2 Imf3 Imf4 Imf5 Imf6

K 3.11 3.45 3.33 5.78 3.38 3.30

(a) (b)

Figure 9: (a) The IEWT decomposition result; (b) The result of the envelope spectrum.

For the comparison, The EMD method is used to decompose the denoised signal, as
shown in Figure 10. Due to limited space, only the first six components are enumerated.
The first three IMFs components contain most of the fault information, and the fault
features of the remaining components are not obvious and exist the false components
beyond understanding which is not conducive to later analysis.

The simulation results show that when the impulses reflecting fault features is over-
whelmed in the background of heavy noise and other strong vibration components, the
peaks of the Fourier spectrum are not obvious, which is unfavorable to accurately seg-
ment the spectrum. However, by combining the MOMEDA and IEWT method, the
simulation signal is adaptively decomposed into meaningful components, the fault fea-
tures frequency can be accurately extracted from the envelope spectrum which realizes
the effective diagnosis of the bearing.

5 Experimental Analysis

We use the rolling bearing data for experimental verification. The basic layout of
the Bearing Test Rig is shown in Figure 12, including a 2 hp Electric motor, a torque
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Figure 10: The decomposition result based on MOMEDA and EMD.

transducer and encoder, a dynamometer, as well as electronic control system (not shown

in Figure 11). The tested bearing supports the shaft of the motor. The drive end bearing

type is SKF6205. An acceleration sensor is placed above the bearing seat on the Electric

motor drive end to collect the vibration acceleration signal of the fault bearing. In this

paper, the wear data of the inner race of the drive end bearing is analyzed. The rotation

speed is 1797 r/min, the damage diameter is 0.007 inch, the sampling frequency is 12

kHz, the inner race fault frequency is 162 Hz, the period is 74, the rotation frequency is

29Hz and the sampling points is 4800.

Figure 11: The bearing test rig.

The collected vibration signal of the inner race is shown in Figure 12. We can

see that there is only a few impulse components and no regularity. The inner race fault

signal performs the Fourier transform, the obtained frequency domain is shown in Figure

13(a) and Figure 13(b), in which we can find that the energy of the signal is basically

distributed in the wide frequency range. Since the fault signal has a lot of background
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noise, it can only see a few frequency components of outstanding value. Hence, the

classic Fourier transform and envelope spectrum analysis cannot effectively extract the

fault feature of the signal.

Figure 12: The vibration signal of the bearing inner race.

(a) (b)

Figure 13: (a) The frequency domain results of the signal; (b) The envelope spectrum of the
signal.

Using the MOMEDA denoised method performs signal processing which effectively

extracts extensive impulse components. Firstly, the Mkurt analysis is performed and the

result is as shown in Figure 14(a), it can be seen from the figure that the fault period

is about 74 and appearing the half and the integer multiplication of the fault period.

Then the fault interval further shrinks and is restricted to a range of [70-78]. Finally, the

fault signal is denoised by the MOMEDA method, a large amount of noise is removed,

as shown in Figure 14(b).

The denoised vibration signal is decomposed into meaningful mode components by

the IEWT method, as shown in Figure 15. It can be seen from Figure 15 that the

fault impulses periodically appears. Due to the limited space, only the first six IMFs

components with the largest kurtosis value are listed in this paper. The kurtosis values

are shown in Table 2 and we can see that the imf4 kurtosis value is maximum. The

Hilbert envelope spectrum is employed to analyze IMF4 component, the result is shown

in Figure 16, in which it can be clearly seen that the bearing rotational frequency fr,
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(a) (b)

Figure 14: (a) The result of the Mkurt; (b) The result of the denoised signal.

Figure 15: The decomposition results based on MOMEDA and IEWT.

the fault feature frequency and its frequency multiplication are obvious at the spectrum,

which can clearly determine that the bearing inner race occurs the fault and coincide

with the actual situation.

Table 2: The kurtosis value.

IMF Imf1 Imf2 Imf3 Imf4 Imf5 Imf6

K 2.65 3.46 4.64 5.70 5.38 5.03
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Figure 16: The result of the envelope spectrum.

6. Conclusions

(1) Aiming at the problem of early weak fault of non-stationary vibration signal in com-

plicated and heavy noises, a rolling bearing fault diagnosis technology based on MO-

MEDA and IEWT is proposed. The simulation and test results show that this method

is feasible and effective.

(2) The MOMEDA method can identify the periodic impulses, using the Mkurt method

is to estimate the approximate period of the fault, and then control the locations

of deconvolution by setting a reasonable period interval of the fault to accurately

achieve denoised signal.

(3) The IEWT method is used to solve the problem of the spectrum segmentation, and

the method of selecting sensitive components is given, which improves the accuracy

of the Hilbert envelope spectrum analysis.

(4) Due to the time relationship, this paper only uses the MOMEDA method to achieve

accurate denoise and the IEWT method to achieve modal decomposition. However, it

cannot implement self-adaptive features extraction and intelligent diagnosis of faulty

conditions. It needs to be future studied in the future, such as applying deep learning

theory.
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