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Abstract

In transportation activities, providing a workload balance for drivers and vehicles can

contribute several benefits for the firm. However, few attention has been paid to the im-

portance of workload balance in location-routing problem (LRP) research. Thus, this study

intends to present a mathematical model to solve the multi-objective LRP which addresses

this issue. The proposed model considers two objective functions: (1) to minimize the total

cost and (2) to balance the workload in distribution activities. The main purposes of this

model are to obtain the optimal location of a distribution center, number of vehicles estab-

lished, and delivery routes which satisfy both of these two objectives. Furthermore, to solve

the model, this study proposes the non-dominated sorting genetic algorithm-II (NSGA-II)

for several problem scenarios with different numbers of customers. The experimental results

show that the proposed algorithm performs well in terms of quality and computational time

of the solution.

Keywords: Location-Routing Problem (LRP), multi-objective, workload balance, total

time difference, NSGA-II.

1. Introduction

The location-routing problem (LRP) is an emerging area in transportation planning

research. LRP covers all three decision levels in supply chain management by simultane-

ously planning the facilities, vehicles, and routes of a supply network. It combines two

well-known planning tasks: the facility location problem (FLP) and the vehicle-routing

problem (VRP), which have been frequently addressed separately (see Drexl and Schnei-

der [6] and Prodhon and Prins [18]). Because solving FLP and VRP separately may lead

to a suboptimal planning result, LRP has a critical role in transportation planning.

One important question in transportation planning is how to provide a workload

balance for drivers and vehicles. There are three common workloads in transportation

activities: distance traveled, working time spent, and load carried (see Sivaramkumar

et al. [19]). Balancing these three elements is beneficial for a company. It provides

uniformity of vehicle maintenance, improves employee satisfaction, and also can reduce
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the possibility of road accident, which may be caused by driver fatigue from work overload

(see Morrow and Crum [14]). Nevertheless, the company still has to consider the financial

aspect to obtain the minimum system-wide cost.

Unfortunately, previous studies in LRP have not sufficiently addressed the impor-

tance of workload balance. Most research merely considers balancing the distance trav-

eled by vehicles. Sivaramkumar et al. [19] noted that this approach is only sufficient

when time aspect is not considered. However, in urban transport situation, this approach

is unrealistic due to several factors such as congestion, which makes the travel times of

two routes with the same length may differ.

This study intends to present a mathematical model to solve the multi-objective LRP

with capacitated vehicles which addresses the previously mentioned issue. The proposed

model considers two objective functions: (1) to minimize the total cost associated with

facility, vehicle, and distribution, and (2) to balance the workload in distribution activ-

ities, by minimizing the difference between a route with longest trip time and a route

with shortest trip time. Trip time itself is calculated from travel time and service time

on each customer. The main purposes of this model are to obtain the optimal location

of a distribution center (DC), number of vehicles established, and delivery routes which

satisfy both objectives.

LRP has nature as an NP-hard problem that as the problem size increases, getting

the exact solution becomes infeasible. Therefore, this study proposes a popular meta-

heuristic, non-dominated sorting genetic algorithm-II (NSGA-II) (see Deb et al. [5]) to

solve the aforementioned model. The computational experiments are done to several

problem scenarios with different numbers of customers and depots.

The main contribution of this study is to propose a novel mathematical model which

considers total time balance as an objective function to attain workload balance condi-

tion. This study also proposes the usage of NSGA-II, and compares it with two alter-

native metaheuristics, namely Pareto archived evolution strategy (PAES) (see Knowles

and Corne [9]) and Pareto envelope-based selection algorithm (PESA) (see Corne et al.

[4]) which contributes to reveal the feasibility of each technique to solve this model.

The remainder of this paper is organized in the following way. Section 2 presents

the literature review of related works. Section 3 describes the problem and the proposed

model. Section 4 discusses the computational experiments. Finally, Section 5 presents the

conclusion and suggestions for future research. In addition, this study uses the definition

of LRP as suggested by Drexl and Schneider [6], as “a mathematical optimization problem

where at least the following two types of decisions must be made interdependently: (1)

which facilities out of a finite or infinite set of potential ones should be used (for a certain

purpose)?, (2) which vehicle routes should be built, i.e., which customer clusters should

be formed and in which sequence should the customers in each clusters be visited by a

vehicle from a given fleet (to perform a certain service)?”.
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2. Literature Review

The amount of literatures of LRP has been increasing continuously. Prodhon and

Prins [18] for example, noted that at least 72 papers about LRP were published between

2007 and 2013. This number was considerably higher than the previous period which

was noted by Nagy and Salhi [16].

Various studies have attempted to engage multiple objective functions into the math-

ematical model of LRP. Unfortunately, few authors have addressed any objectives related

to workload balance. As discussed in Section 1, providing workload balance is an impor-

tant task in transportation planning. This literature review only finds at least five works

which tackle this issue in LRP.

There are four papers which consider minimizing the difference of distance traveled

of each vehicle (route balance). Mart́ınez-Salazar et al. [12] and developed a model to

minimize distribution costs and distance differences in a multi-objective transportation

location-routing problem (TLRP), which basically is an extension of two-stage LRP.

Separately, Mart́ınez-Salazar et al. [13] also proposed the same model but solved using

different metaheuristics. Recently, Golmohammadi et al. [7] and Hadian et al. [8]

also considered similar objectives to propose the usage of multi-objective imperialist

competitive algorithm (MOICA) into LRP.

Another literature considers workload balance with different measurement. Lin and

Kwok [11] attempted to balance the working time in LRP. The authors considered to

balance the workload between each vehicle in case of multiple uses of vehicles. Working

time, imbalance, load imbalance, and total cost are minimized. Unfortunately, Lin and

Kwok [11] did not provide any information regarding the mathematical model that they

used.

Balancing the working time in supply network provides more benefits for drivers and

companies. This approach is commonly used in VRPTW and previously Sivaramkumar

et al. [19] have proven that minimizing the difference of time traveled of each vehicle

(total time balance) gives a better evenness than route balance. Based on our literature

review, Lin and Kwok [11] are the only authors who already considered this approach in

LRP. Thus, it is concluded that the implementation of total time balance objective in

LRP is still widely expandable and this study is aimed to fill this gap.

3. Methodology

This study proposes a multi-objective LRP model with capacitated vehicles to ad-

dress the workload balance issue. In order to solve this model, this study proposes to

use a popular metaheuristic, namely NSGA-II.

Several characteristics and assumptions are considered in the proposed model:

(1) The capacity of each DC is unlimited.

(2) Only one DC will be opened.

(3) Homogeneous vehicle.
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(4) The amount of demand for each customer, the distance, and travel time between

nodes are assumed to be deterministic.

(5) The travel times between nodes are not symmetrical.

(6) The service time in each customer is assumed to be deterministic and uniform.

3.1. Mathematical model

The problem described above can be formulated as the following mathematical program:

Sets and parameters

I Number of potential DC locations.

J Number of customers.

K Number of vehicles established.

L Number of all nodes (I ∪ J).

Gi Fixed cost of opening DC i.

F Fixed cost of establishing a vehicle.

P Variable cost per distance unit.

Q Capacity of vehicle.

dj Demand of customer j.

cij Distance from i to j.

s Service time.

tij Travel time from i to j.

TTk Total trip time at route k.

Decision variables

Xi =

{

1, if DC i is opened,

0, otherwise.

Yijk =

{

1, if a vehicle goes from i to j on route k,

0, otherwise.

Zij =

{

1, if the demand of customer j is served by DC i,

0, otherwise.

Ulk = auxiliary variable for sub-tour elimination constraints on route k.

Objective Functions

min f1 =
∑

i∈I

GiXi +
∑

i∈I

∑

j∈J

∑

k∈K

YijkF +
∑

i∈L

∑

j∈L

∑

k∈K

YijkcijP, (3.1)

min f2 = (TT )max − (TT )min. (3.2)
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Constraints

∑

i∈I

Xi = 1 (3.3)

∑

i∈L

∑

k∈K

Yijk = 1 ∀ j ∈ J (3.4)

∑

i∈I

∑

j∈J

Yijk ≤ 1 ∀ k ∈ K (3.5)

∑

j∈L

Yjik −
∑

j∈L

Yijk = 0 ∀ i ∈ L, ∀ k ∈ K (3.6)

∑

l∈J

Yilk −
∑

l∈L

Yljk ≤ 1 + Zljk ∀ i ∈ I, ∀ j ∈ J, ∀ k ∈ K, ∀ l 6= j (3.7)

Ulk − Ujk + JYljk ≤ J − 1 ∀ l, j ∈ L, ∀ k ∈ K (3.8)

0 ≤ Ulk ≤ J − 1 ∀ l ∈ J, ∀ k ∈ K (3.9)

∑

i∈I

∑

j∈J

Yijkdj ≤ Q ∀ k ∈ K (3.10)

TTk =
∑

i∈L

∑

j∈L

Yijk t̃ij +
∑

i∈L

∑

j∈J

Yijks ∀ k ∈ K (3.11)

(TT )max = max[TTk] ∀ k ∈ K (3.12)

(TT )min = min[TTk] ∀ k ∈ K (3.13)

This model considers two objective functions. The objective function (3.1) is an

economical objective which minimizes the total cost of the network, including the cost

of establishing DC, the cost of establishing vehicles, and the cost of routing from DC to

customers. The objective function (3.2) minimizes the difference between a route with

longest trip time and a route with shortest trip time. The latter objective is called as

total time balance objective. Furthermore, trip time is calculated from travel time and

service time on each customer.

Several constraints are also considered. Constraint (3.3) ensures that only one DC is

opened from all potential locations. Constraint (3.4) ensures that each customer will only

be visited once and only by one vehicle. Constraint (3.5) guarantees that each vehicle is

only routed from one DC. Constraint (3.6) is flow conversation constraint which assures

that each vehicle will depart from a customer node after entering it. The relationship

between DC and customers is guaranteed by Constraint (3.7), while Constraints (3.8)

and (3.9) are the sub-tour elimination constraints. Constraint (3.10) limits the vehicle

in terms of capacity. Constraint (3.11) defines the total trip time of each vehicle route.

Lastly, constraints (3.12) and (3.13) define the longest and shortest route in terms of

total trip time.
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3.2. Solution representation

The solution representation in this study is shown in Figure 1. It contains a string of

numbers which consists of one bit for the selected DC location, J bits for a permutation

of customers, and a bit for the amount of vehicle used. The initial solution is generated

randomly to select one of the potential DC location and a permutation of customer nodes.

After that, the amount of vehicle is calculated and the vehicle routes are recorded.

Figure 1: Solution representation.

3.3. NSGA-II.

NSGA-II generates a set of Pareto optimal solutions which is suitable for dealing

with a trade-off situation. This method creates offspring based on crossover and mutation

mechanism to avoid being trapped in local solution. A binary tournament selection is

implemented to create a mating pool for parents, then the algorithm combines them using

a single-point crossover technique. Subsequently, a combination of randomized mutation

for DC selection and swap mutation technique for customer nodes are implemented.

The general procedures of NSGA-II are described in Table 1, while Figure 2 and Figure

3 respectively present the mechanisms of the single-point crossover and the mutation

techniques.

Figure 2: Single-point crossover.
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Figure 3: Swap mutation.

Table 1: General Procedures of NSGA-II.

Step 1: Inputs

(1) Population size, N

(2) Number of generations, g

(3) Probability of crossover, Pc

(4) Probability of mutation, Pm

Step 2: Initialization

(1) Initialize population P with size N

(2) Generate the initial solution P0

Step 3: Evaluation

(1) Calculate fitness value for each chromosome.

(2) Fast non-dominated sorting, assign rank for P0 based on Pareto dominance.

Step 4: Generate Child Population

(1) Binary tournament selection.

(2) Crossover and mutation, generate offspring Qt.

Step 5: Main loop

While stopping criterion (t > g) is not met, do :

(1) Calculate fitness value for each chromosome.

(2) Merge the current population and offspring, Rt = Pt ∪Qt.

(3) Fast non-dominated sorting to assign rank for Rt.

(4) Crowding distance assignment for Rt.

(5) Sort the Rt based on the frontier rank and crowding distance (Fi,≺n).

(6) Pt+1 = ∅, i = 1

While Pt+1 + Fi ≤ N , do :
(7) Pt+1 = Pt+1 ∪ Fi

(8) i = i+ 1

(9) Binary tournament selection.

(10) Crossover and mutation, generate Qt.

Return Qg as the final solution.
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4. Computational Experiments

In order to evaluate the effectiveness of the proposed algorithm, this study imple-

ments NSGA-II into three classes of data sets: small, medium, and large. These instances

are modified from three well-known instances of capacitated LRP (see Christofides and

Eilon [2], Perl [17], and Tuzun and Burke [20]) to incorporate the travel time measurement

between nodes. The details of each data set are shown in Table 2. The computational

experiments are executed on a PC with an Intel Core I7-3770 CPU (3.40 GHz) and 16

GB memory. All algorithms are coded in MATLAB R2018b.

4.1. Parameter settings

The quality of a metaheuristic algorithm is highly influenced by the value the param-

eters. Thus, it is important to find the optimal settings for each algorithm. Firstly, four

parameters need to be calibrated in NSGA-II: population size (N), number of genera-

tions (g), probability of crossover (Pc), and probability of mutation (Pm). Secondly, three

parameters are considered in PAES: number of generations (g), maximum size of archive

(Refpop), and the number of grids (Grids). Lastly, there are four parameters in PESA:

number of generations (g), size of internal population (PI), probability of crossover (Pc),

and the number of grids (Grids).

This study deploys a three-level Taguchi procedure and utilizes L9 orthogonal array

design with smaller-the-better response. This approach is previously used by Mousavi

et al. [15] to optimize and compare the performance of metaheuristics. Table 3 shows

the levels of each parameter from previous pilot study and the optimal settings for each

algorithm.

Table 2: Data sets.

Instances Class Customer - DC Travel Time

Mod-Perl83-A Small 6 - 2 Asymmetric

Mod-Perl83-B Small 8 - 2 Asymmetric

Mod-Perl83-C Small 10 - 2 Asymmetric

Mod-Perl83-D Small 12 - 2 Asymmetric

Mod-Christofides69 Medium 50 - 5 Asymmetric

Mod-P111112 Large 100 - 10 Asymmetric

4.2. Small data set

For small data set, this study compares the performance of NSGA-II with the exact

solution results. The exact solutions are obtained using LINGO 11.0 solver. Four differ-

ent instances are considered, namely Mod-Perl83-A, Mod-Perl83-B, Mod-Perl83-C, and

Mod-Perl83-D (see Perl [17]). Each method is executed only once for each instance and

the computational results are shown in Table 4 and Table 5. However, since NSGA-II
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Table 3: Parameter ranges for each algorithm.

Algorithm Parameters Range
Levels

Optimal Value
1 2 3

NSGA-II

g 100-300 100 200 300 100

N 100-200 100 150 200 100

Pc 0.7-0.9 0.7 0.8 0.9 0.8

Pm 0.1-0.3 0.1 0.2 0.3 0.3

PAES
g 100-200 100 150 200 100

Refpop 5-15 5 10 15 10

Grids 3-9 3 6 9 6

PESA

g 100-300 100 200 300 300

PI 100-200 100 150 200 100

Pc 0.7-0.9 0.7 0.8 0.9 0.9

Grids 3-9 3 6 9 3

returns multiple solutions which are non-dominating each other, the comparison is done

only to the average value of Pareto solutions.

The results show that NSGA-II is competitive for solving small-sized problem. For

Mod-Perl83-A instance, LINGO 11.0 is able to obtain the global optimum point, while

NSGA-II provides Pareto solutions near the global optimum point. Furthermore, the

results also show the limitation of the exact solution. As the size of the problem in-

creases, LINGO 11.0 can only obtain a local optimum point after two hours running

time. Meanwhile, NSGA-II is able to acquire competitive values in a relatively short

time.

4.3. Medium and large data sets

In this stage, this study compares NSGA-II with two alternative algorithms for the

medium and large data sets. This approach is implemented because LINGO 11.0 is

not able to find solutions in both data sets. The goal of this stage is to see whether

our proposed algorithm is competitive for solving the model in medium and large-sized

problems.

The performance of a multi-objective optimization algorithm is indicated by four

key aspects. Li and Yao [10] detailed those aspects as cardinality, spread, convergence,

and uniformity of the solutions. Thus, this study compares NSGA-II, PAES and PESA

in terms of five quality indicators: (1) error ratio (ER) (see Mousavi et al. [15]) to

capture the ratio of Pareto solutions to the population, (2) modified maximum spread

(MS′) (see Adra and Fleming [1]) to capture the diversity of solutions, (3) mean-ideal

distance (MID) (see Mousavi et al. [15]) to measure the convergence of solutions into

ideal point (0,0), (4) Spacing metric (SM) (see Collette and Siarry [3]) to measure the

uniformity between solutions, and (5) CPU time (CPU) required to run the algorithm.
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An algorithm performs better if it has a lower ER, higher MS′, lower MID, lower SM ,

and lower CPU .

To provide a better comparison, all algorithms are executed with ten replications for

each data set. Furthermore, the results are analyzed using one-way analysis of variance

(ANOVA) with a 95% confidence level and Tukey post hoc test. The statistical tests are

executed using Minitab 18.0 software.

Table 4: Computational results of LINGO 11.0 for the small data set.

Data Set CPU(s)
Objective Value

Note
Total Cost Time Difference

Mod-Perl83-A 290 234.473 0.008 Global Optimum

Mod-Perl83-B 7200 299.712 1.396 Local Optimum

Mod-Perl83-C 7200 366.751 1.436 Local Optimum

Mod-Perl83-D 7200 369.352 0.029 Local Optimum

Table 5: Computational results of NSGA-II for the small data set.

Data Set CPU(s)
Objective Value

Note
Total Cost Time Difference

Mod-Perl83-A 12.078 236.075 0.001 Average of Pareto solutions

Mod-Perl83-B 11.291 303.002 1.337 Average of Pareto solutions

Mod-Perl83-C 10.644 368.464 2.787 Average of Pareto solutions

Mod-Perl83-D 12.040 370.474 0.005 Average of Pareto solutions

4.3.1. Medium data set

The medium-sized data is named Mod-Christofides69 (see Christofides and Eilon [2])

which consists of 50 nodes of customers and five potential DC locations. The experiment

demonstrates that NSGA-II is competitive to solve medium-sized data set. The compu-

tational results of NSGA-II, PAES, and PESA for medium-sized data sets are shown in

Table 6, Table 7, and Table 8, respectively. Five one-way ANOVA tests are deployed to

see whether there is a significant performance difference. Table 9 shows the results of

one-way ANOVA tests at a 95% confidence level, it indicates that there are significant

differences between NSGA-II, PAES, and PESA in all indicators.

Thus, we plot the boxplot and apply Tukey post hoc test for further analysis. Figures

4-8 show the boxplots of each indicator and Table 10 presents the result of Tukey test.

The boxplots and Tukey test prove that NSGA-II is superior in three quality indicators:

ER, MS′, and MID. This concludes that NSGA-II produces better amount of solutions

per population with better spread and convergence, which implies that the decision maker

can consider more and better solutions to solve the model with NSGA-II. However, it
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is interesting to note that NSGA-II achieves the worst solutions uniformity. Moreover,

Figure 9 presents the best Pareto solutions of each algorithm in the medium data set.

Table 6: Computational results of NSGA-II for the medium data set.

Iterations ER MS′ MID SM CPU(s)

1 0.90 15.372 24.357 0.029 22.127

2 0.90 39.117 23.328 0.087 23.219

3 0.96 25.027 23.416 0.038 23.905

4 0.91 18.910 23.067 0.068 23.758

5 0.90 37.972 23.316 0.104 23.359

6 0.94 26.375 23.175 0.071 22.494

7 0.87 24.564 23.165 0.116 22.823

8 0.92 31.667 23.342 0.070 22.120

9 0.92 25.735 23.115 0.050 25.531

10 0.88 39.809 23.348 0.108 24.502

Average 0.91 28.455 23.363 0.074 23.384

St. dev. 0.027 8.461 0.368 0.030 1.084

Table 7: Computational results of PAES for the medium data set.

Iterations ER MS′ MID SM CPU(s)

1 0.95 15.371 23.913 0.038 4.218

2 0.96 18.338 23.740 0.033 3.445

3 0.95 20.063 23.968 0.024 4.339

4 0.96 14.427 24.044 0.025 3.017

5 0.97 7.468 23.819 0.020 3.042

6 0.94 9.799 24.087 0.025 3.916

7 0.97 3.637 23.969 0.022 4.051

8 0.97 16.683 24.029 0.020 3.099

9 0.95 23.610 23.682 0.041 4.528

10 0.95 15.603 24.182 0.020 4.478

Average 0.96 14.500 23.943 0.027 3.813

St. dev. 0.011 6.009 0.157 0.008 0.609

4.3.2. Large data set

The data considered in the last experiment is named Mod-P111112 (see Tuzun and

Burke [20]) which consists of 100 nodes of customers and ten potential DC locations.

The experiments demonstrate that NSGA-II is competitive to solve large-sized data set.



260 SETYO TRI WINDRAS MARA, ANNA MARIA SRI ASIH AND R. J. KUO

Table 8: Computational results of PESA for the medium data set.

Iterations ER MS′ MID SM CPU(s)

1 0.92 17.953 23.649 0.075 57.227

2 0.97 6.240 23.483 0.031 61.294

3 0.94 9.224 23.411 0.035 58.645

4 0.94 29.451 23.800 0.050 59.591

5 0.97 1.503 23.443 0.020 59.979

6 0.96 8.882 23.679 0.030 57.671

7 0.95 3.436 23.268 0.051 60.503

8 0.94 11.819 23.365 0.032 59.617

9 0.95 12.081 23.386 0.028 59.005

10 0.97 5.161 23.663 0.039 58.379

Average 0.95 10.575 23.515 0.039 59.191

St. dev. 0.017 8.169 0.172 0.016 1.259

Table 9: ANOVA results for the medium data set.

Indicators F-Value P-Value

ER 17.85 0

MS′ 15.19 0

MID 14.33 0

SM 15.17 0

CPU 7553.78 0

Figure 4: The boxplot of ER for the medium data set.

The computational results of NSGA-II, PAES, and PESA for large-sized data sets are

shown in Table 11, Table 12, and Table 13. Moreover, Table 14 shows the results of
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Figure 5: The boxplot of MS′ for the medium data set.

Figure 6: The boxplot of MID for the medium data set.

Figure 7: The boxplot of SM for the medium data set.

one-way ANOVA tests at a 95% confidence level, it indicates that there are significant

differences between NSGA-II, PAES, and PESA in all indicators.
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Figure 8: The boxplot of CPU time for the medium data set.

Table 10: Tukey post hoc test for the medium data set.

Indicators Factors N Mean Grouping

ER

PESA 10 0.957 A

PAES 10 0.951 A

NSGA-II 10 0.91 B

MS′

NSGA-II 10 28.45 A

PAES 10 15 B

PESA 10 10.57 B

MID

PAES 10 23.943 A

PESA 10 23.515 B

NSGA-II 10 23.363 B

SM

NSGA-II 10 0.0741 A

PESA 10 0.0391 B

PAES 10 0.0269 B

CPU

PESA 10 59.191 A

NSGA-II 10 23.384 B

PAES 10 3.813 C

Note: Two factors with different grouping letters indicate that they are significantly different.

Furthermore, the boxplot and Tukey post hoc test are deployed. Figures 10, 11, 12,

13, and 14 show the boxplots of each indicator and Table 15 presents the result of Tukey

test. The boxplots and Tukey test prove that NSGA-II is also superior in three quality

indicators: ER, MS′, and MID. This means that NSGA-II produces better amount of

solutions per population with better solutions’ diversity and convergence, which implies

that the decision maker can consider more and better solutions to solve the model with

NSGA-II. Also, it is interesting to note that PAES obtains competitive solutions in a
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Figure 9: The best solutions from ten iterations for the medium data set.

relatively short time even for a large data set. Moreover, Figure 15 presents the best

Pareto solutions of each algorithm in the large data set.

Table 11: Performance of NSGA-II with large data set.

Iterations ER MS′ MID SM CPU(s)

1 0.86 121.720 24.514 0.135 57.423

2 0.86 76.670 24.332 0.058 58.045

3 0.90 72.562 24.634 0.078 57.163

4 0.85 89.125 25.200 0.135 56.852

5 0.88 102.718 24.565 0.098 56.393

6 0.86 72.855 24.391 0.062 60.987

7 0.88 47.534 24.375 0.093 57.628

8 0.90 33.600 24.073 0.075 61.236

9 0.88 101.157 24.443 0.048 56.188

10 0.87 46.014 24.227 0.100 59.551

Average 0.87 76.395 24.475 0.088 58.147

St. dev. 0.017 28.160 0.302 0.030 1.824
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Table 12: Performance of PAES with large data set.

Iterations ER MS′ MID SM CPU(s)

1 0.90 52.222 26.958 0.041 5.789

2 0.93 37.143 26.627 0.053 4.297

3 0.94 61.188 26.338 0.038 5.510

4 0.91 32.898 27.017 0.071 5.854

5 0.91 36.499 26.661 0.052 4.917

6 0.92 43.813 25.884 0.053 5.778

7 0.90 56.302 26.775 0.050 5.806

8 0.91 36.527 26.510 0.040 5.763

9 0.90 22.369 26.106 0.053 6.182

10 0.93 51.084 26.904 0.056 5.972

Average 0.92 43.005 26.578 0.051 5.587

St. dev. 0.014 12.041 0.374 0.010 0.563

Table 13: Performance of PESA with large data set.

Iterations ER MS′ MID SM CPU(s)

1 0.96 11.010 24.905 0.031 186.697

2 0.98 14.944 25.180 0.020 182.584

3 0.98 6.020 25.969 0.020 195.976

4 0.96 1.507 24.924 0.037 186.178

5 0.96 32.132 25.281 0.039 184.581

6 0.95 27.896 25.351 0.037 191.800

7 0.96 88.000 25.482 0.038 173.004

8 0.94 60.546 25.469 0.021 188.063

9 0.97 11.232 25.444 0.020 189.250

10 0.93 53.040 25.832 0.032 175.204

Average 0.96 30.633 25.384 0.030 185.334

St. dev. 0.016 28.204 0.343 0.008 7.017
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Table 14: ANOVA results for the large data set.

Indicators F-Value P-Value

ER 71.96 0

MS′ 9.70 0.001

MID 95.673 0

SM 25.27 0

CPU 4844.99 0

Figure 10: The boxplot of ER for the large data set.

Figure 11: The boxplot of MS′ for the large data set.

5. Conclusions

This study intends to present a mathematical model to solve the multi-objective LRP

with capacitated vehicles which addresses workload balance issue. The proposed model

considers two objective functions: (1) to minimize the total cost associated with facility,

vehicle, and distribution, and (2) to balance the workload in distribution activities,
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Figure 12: The boxplot of MID for the large data set.

Figure 13: The boxplot of SM for the large data set.

Figure 14: The boxplot of CPU time for the large data set.

by minimizing the difference between a route with longest trip time and a route with

shortest trip time. The main purposes of this model are to obtain the optimal location
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Table 15: Tukey post hoc test for the large data set.

Indicators Factors N Mean Grouping

ER

PESA 10 0.959 A

PAES 10 0.915 B

NSGA-II 10 0.874 C

MS′

NSGA-II 10 76.400 A

PAES 10 43 B

PESA 10 30.630 B

MID

PAES 10 26.578 A

PESA 10 25.384 B

NSGA-II 10 24.475 C

SM

NSGA-II 10 0.088 A

PESA 10 0.051 B

PAES 10 0.030 C

CPU

PESA 10 185.330 A

NSGA-II 10 58.147 B

PAES 10 5.587 C

Note: Two factors with different grouping letters indicate that they are significantly different.

of a DC, number of vehicles established, and delivery routes which satisfy both of these

two objectives. Furthermore, the details of our proposed model are described in Section

3.1.

This study also proposes NSGA-II to solve the proposed model. In order to evaluate

the effectiveness of the proposed algorithm, this study compares it with LINGO 11.0

solver for small-sized data sets and two alternative metaheuristics, namely PAES and

PESA for medium-sized and large-sized data sets. The experimental results show that

the proposed algorithm performs well in terms of solution quality and computational

time. For small data sets, NSGA-II is able to obtain competitive solutions in relatively

low computational time, compared to the exact solution from LINGO 11.0. For medium

and large data sets, NSGA-II is proven to be superior to PAES and PESA in terms of the

cardinality, spread, and convergence of the solutions. This result implies that NSGA-II

is able to provide the decision maker with more solutions that have better diversity and

solution quality, with respect to the cost minimization and total time balance objectives.

Lastly, this study provides several future research directions. Some larger cases of

LRP with capacitated DCs can be considered, so the relationship between the cost of

opening DC and vehicles can be further explained. Also, the time window for each

customer is an interesting aspect to be analyzed. Furthermore, the uncertainty aspects

of transportation activity also can be modeled using stochastic or fuzzy approach to

capture the volatility of travel time.
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Figure 15: The best solutions from ten iterations for the large data set.
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