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Abstract

In this study, we compare realized measure and implied volatility for forecasting of the

volatility. Firstly, we employ a family of homogenous loss functions as the evaluation criteria

in order to run a fair and complete forecast comparison. Our results show that, predictors

based on realized measures are superior to that derived from implied volatility for both

within-sample fitting and one-step-ahead forecasting, whereas the superiority of the latter

type is presented in multi-step-ahead forecasting. Secondly, as a result of the comparison, a

new model average approach with weights that depend on market conditions is developed to

combine the information from implied volatility and realized measure for volatility forecast-

ing. And our results show the superiority of the proposed approach in combining realized

measures and implied volatility for volatility prediction.

Keywords: Volatility forecasts, forecasting competitions, combining forecasts, realized

volatility, implied volatility.

1. Introduction

As non-parametric daily realized measures of volatility constructed from high-frequency

data has become prevailing, a new comparison analysis based on information content of

realized measure and implied volatilities from options in forecasting volatility has oc-

curred. Using an implied volatility index (V IX) which derives from S&P 100 or 500

index options, Blair et al. [5] provide the evidence for the insignificance of incremental

forecasting information in the realized measures. In contrast, Koopman et al. [13] show

that models with the realized measure are more superior. From recent study of Han and

Park [11] (henceforth HP) it can be concluded that, for in-sample fitting, forecasts derived

from time-series models of realized measures outperform those from implied volatility.

In contrast, the latter is more informative than the former for out-of-sample forecasting,

in particular for multi-step-ahead forecasting. Therefore, there have mixed conclusions

so far.
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The aforementioned researches have predominantly focused on ranking predictors

by employing certain robust loss function as forecast evaluation criteria. Using certain

robust loss function as forecast evaluation criteria may provide consistent ranking of

them, but it obviously can’t provide a complete investigation into their forecasting per-

formances. Recently, Patton [17] propose a family of homogenous loss functions that are

robust to the presence of noise in realized volatility proxies and contain the widely used

criteria as special cases. Obviously, with the aid of these loss function, a more complete

investigation can be performed. Moreover, for time-series models of realized measures,

there have been some new developments in current literatures; see, Patton and Sheppard

[18] find that disentangling the effects of negative and positive realized semivariance can

significantly improve forecasts of future volatility. These new developments may have

potential to provide new evidences related to previous studies.

In addition, the previous studies comparing realized measures with implied volatility

all has employed the V IX index that based on the S&P 500 or 100 index as the sample

data. It is well known that the V XD and V XN indexes based on DJIA and Nasdaq 100

indices respectively are available for a long period. In order to obtain more convincing

results, in addition to V IX index, the sample data of our study also includes the V XD

and V XN indexes as well. Clearly, these facts warrant a fresh investigation into the

competition between forecasts from implied volatility and time-series models of realized

volatility.

Finally, we undertake a model average of forecasts considered in this paper. Although

there are some literature devoted to combine the forecasts produced by abovementioned

two approaches, the results are not always desirable. For example, Han and Park [11]

had recently pointed out, it is not helpful to use all the information provided by the

realized measure and the implied volatility within the framework of GARCH-X model

for multi-step-ahead forecasting. However, the intuition is that, in general, the more

information are utilized, the more precise forecasts will be obtained under proper model

framework. And as pointed by Clemen [6], the results have been virtually unanimous:

combining multiple forecasts leads to increased forecast accuracy. Therefore, looking for

a proper approach to combine them is crucial in increasing forecast accuracy.

Thus, contributions of our paper are multifold: Firstly, it updates earlier research by

employing a family of homogenous loss functions as the evaluation criteria, and consider-

ing state-of-the-art forecasting models of realized measures. Secondly, it focuses on new

implied volatility index. Obviously, compared with previous studies that only use S&P

500 or S&P 100 index data, our study applies more sample data, and consequently, the

obtained results are more convincing. Finally, it proposes a new model average approach

with weights that depend on market condition to combine the forecasts.

Within the Diebold-Mariano and West test (see West [19]) framework, the forecast

evaluations show that, predictors based on realized measures are superior to those de-

rived from implied volatility for within-sample fitting and one-step-ahead forecasting,

whereas the latter’s superiority lies in multi-step-ahead forecasting and enhances grad-

ually with increasing forecast horizon. Comparing with previous studies, the proposed
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model average approach performs the best for multi-step-ahead out-of-sample forecast,

especially for 10-step-ahead and 22-step-ahead forecast.

This paper is organized as follows. In Section 2, we reinvestigate the forecasting be-

haviors of volatility predictors using implied volatility and realized measures by adopting

a family of homogenous loss functions as the evaluation criteria which contain the widely

used criteria as special cases. And some new and important findings related to previous

studies are presented. In Section 3, a novel model average approach is proposed for com-

bining predictors, and its forecast performance is examined. The final section concludes

the paper.

2. Comparing Realized Measure and Implied Volatility

2.1. Data and forecasting models

In this section, we describe the data and recall volatilities models. There are two

main type of data: daily realized measures and daily implied volatilities. The sample

of observations covers the period from February 01, 2001 to September 30, 2014. This

period is characterized by both calm and highly volatile periods. Then we review some

volatilities models that are popular in the existing literatures and practices, and some

new development in volatilities models.

2.1.1. Realized measures and models

In this study, we use the subsampled versions of realized volatilities (RV), introduced

by Aı̈t-Sahalia et al. [1], because it is among the best forecast performers (Andersen et

al. [2]) and has superiorities in the accuracy of estimating asset price variation (Liu et

al. [15]).

RVt(m) =

√

√

√

√

k
∑

i=1

M
∑

j=1

(Pt,kj/m+i − Pt,k(j−1)/m+i)2 (2.1)

where Pt, is a observation of the log price of the risky asset; 1/m is sampling frequency;

k = ⌊m/M⌋, rounds down to the next integer of m/M ; and M is size of subsample.

In addition to RV , we use another realized measure (realized semivariance, RS), in-

troduced by Barndorff-Nielsen et al. [3], in our analysis. These estimators are defined as

RS+
t (k) =

√

√

√

√

M
∑

j=1

r2t,j(k)I[rt,j(k)>0]

RS−

t (k) =

√

√

√

√

M
∑

j=1

r2t,j(k)I[rt,j(k)<0]

(2.2)

where rt,j(k) = Pt,kj/m − Pt,k(j−1)/m, j = 1, . . . ,M is intraday returns with interval k.

These estimators provide a complete decomposition of standard realized volatility.
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The estimators of RV and RS were computed daily by using 5-minute intraday

returns, i.e., the average interval (k/m) is 5-minute. The choice to sample prices using

an approximate 5-minute window is a standard one, and is motivated by the desire to

reduce the impact from microstructure noise. The data of these realized measures are

provided by the database “Oxford-Man Institute’s realized library” version 0.2, which

has been produced by Heber et al. [12]1 . The chosen data set contains the realized

volatilities for S&P 500, DJIA (Dow Jones Industria Average) and Nasdaq 100 indices.

As shown in Table 1, their distributions have positive skewness and large kurtosis. This

mean that the distributions are asymmetrical and leptokurtotic, especially for S&P 500

and DJIA.

Now, let us recall some models that are popular in the existing literatures and prac-

tice for using realized measures to forecast volatilities. With the advent of high-frequency

data, a new pattern has occurred in which forecasting problems use simple reduced-form

time series models for realized volatility measures. In this respect, the heterogeneous

autoregressive (HAR) model of Corsi [7] appears to be a very successful attempt to in-

troduce a parsimonious component approach in order to forecast daily volatilities. It can

be view as parsimonious restricted versions of high-order autoregressions and given as

yh,t+h = α0 + αdRVt + αwRV
(w)
t + αmRV

(m)
t + εt+h, (2.3)

where, RV
(w)
t =

∑4
j=0RVt−j/5 and RV

(m)
t =

∑21
j=0RVt−j/22 weekly and monthly real-

ized volatility respectively, and εt+h is the random disturbance, yh,t+h is the h-day-ahead

forecasts. Note that in our empirical analysis, we denote yh,t+h as RVt+h for pointwise

forecasting. A leverage effect can also easily be incorporated into the HAR modeling

framework by including on the right-hand-side additional negative returns at different

frequencies, as in Corsi and Reno [8], i.e., extended HAR model construct to LHAR:

yh,t+h = α0 + αdRVt + αwRV
(w)
t + αmRV

(m)
t + λdrt + λtr

(w)
w + λmr

(m)
t + εt+h, (2.4)

where r
(h)
t = min(r

(h)
t , 0), r

(w)
t =

∑4
j=0 rt−j/5 and r

(m)
t =

∑21
j=0 rt−j/21 denote the

average weekly and monthly return respectively.

Recently, Patton and Sheppard [18] extended HAR model by decomposing the re-

alized volatility (RVt) into positive and negative semivariances in order to test whether

signed realized variance is informative for future volatility. The extended model, denoted

HAR-RS henceforth, is specified as

yh,t+h = α0 + ω1RS+
t + ω2RS−

t + ω3RV
(w)
t + ω4RV

(m)
t + εt+h. (2.5)

Within this framework, they find that disentangling the effects of negative and positive

realized semivariance significantly improves forecasts of future volatility.

In our comparison, we apply recent developing models, LHAR Eq. (2.4) and HAR-

RS Eq. (2.5), to realized measures.

1Further details on data preparation and data cleaning can be obtained from the documentation of the
Oxford-man Institude under WWW.oxford-man.ox.ac.uk.
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2.1.2. Implied volatilities

For corresponding implied volatilities, we use the implied volatility indices, V IX,

V XD and V XN indices corresponding to S&P 500, DJIA and Nasdaq 100 indices

respectively2 . Since they are reported annualized, we transform them in daily ones in

order to correspond to daily realized volatilities. Then we denote V IXt, V XDt and

V XNt as daily implied volatility. They are computed from dividing annualized implied

volatility indexes by
√
252. We multiply the time series of realized volatilities and daily

implied volatilities by 102 for the numerical stability of the optimization algorithms.

Table 1 gives some summary statistics for these indexes. Compared with realized volatil-

ities, their distributions are less asymmetrical and leptokurtotic, especially for Nasdaq

100.

Since we employ realized volatility that measure the volatility during trading hours

as a proxy of volatility in this study and implied volatility measure the volatility for all

days, the predictors based on implied volatility were given as (IV model henceforth)

yh,t+h = cT IVt + εt+h, (2.6)

where, IVt denote implied volatility index (V IXt, V XDt and V XNt), cT is bias-adjusted

factor and it can be estimated as ĉT =
∑T−h

t=1 RVh,t+h

/

∑T−h
t=1 IVt and T is sample size.

As shown in the Table 1, the mean of realized volatilities is lower because the realized

volatilities miss out on the overnight return. So employing Eq. (2.6) to adjust forecast is

necessary. The IV model uses the following assumption for the multi-step-ahead forecast:

IVt+h = IVt for h = 1, 2, . . . , 21. (2.7)

As explained above, the implied volatility index is the forecast of a constant 30-day

volatility implied by options. Therefore, Eq. (2.7) is consistent with the definition of the

implied volatility index.

Table 1: Summary Statistics for the variables.

asseta
realized volatilities RVt Implied volatilities

mean std. skewb kurt mean std. skew kurt

S&P 0.843 0.562 2.995 16.77 1.310 0.587 2.013 8.980

DJIA 0.820 0.547 3.205 19.066 1.217 0.542 1.940 8.434

Nasd 0.930 0.546 2.285 11.49 1.741 0.913 1.432 4.283

aS&P, DJIA and Nasd are Standard & Poor’s 500 index, Dow Jones industrial average

index and Nasdaq 100 index respectively.
bskew and kurt are skewness and kurtosis respectively.

2See http://www.cboe.com for more details. The V IX, V XD and V XN data are also available at the web
site.
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2.2. Forecast evaluation criteria

We adopt the realized volatility as the proxy for actual volatility. It is well known

that realized measures are better proxies for actual volatility than squared return series.

However, a better volatility proxy is still imperfect and is a noisy proxy for actual volatil-

ity. Hence, we employ the family of homogenous loss functions advocated by Patton [17]

as evaluation criteria. These functions are robust to the presence of noise in realized

volatility proxies. Parameterized by b, the family of loss function is defined as

L(vt, rvt, b) =























vt − rvt + rvt log
(rvt
vt

)

b = −1

rvt
vt

− log
(rvt
vt

)

− 1 b = −2

1

b+ 1

[ 1

b+ 2

(

rvb+2
t − vb+2

t

)

− vb+1
t (rvt − vt)

]

b 6∈ {−2,−1}

(2.8)

where rv is a volatility measure and v is a corresponding forecast.

The above class of functions for various values of b, ranging from 2 to −2 is pre-

sented in Figure 1. This figure shows that this family of loss functions can take a wide

variety of shapes, ranging from symmetric to asymmetric (b 6= 0), with heavier penalty

either on under-prediction (b < 0) or over-prediction (b > 0). Here we use the values

b ∈ {−2,−1, 0, 1, 2} for forecast evaluation. This will provide more details about the

forecasting performance of the predictors.

Figure 1: Loss functions for various choices of b. True value rv = 2 in this example, with the
volatility forecast ranging between 0 and 4.

The significance of any difference in the homogenous loss function is tested via a

Diebold-Mariano and West (henceforth DMW ) test (see Diebold and Mariano, [9]; West

[19]). A DMW statistic is computed using the difference in the losses of two models:

dt = L(vt,1, rvt)− L(vt,2, rvt), and DMWT =

√
T d̄T

√

avar(
√
T d̄T )

, (2.9)
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where d̄T is the sample mean of dt and T is the number of forecasts. The asymptotic

variance of the average is computed using a Newey-West variance estimator, with the

number of lags set to 5.

2.3. Forecast evaluation

The comparison is based on in-sample and out-of-sample forecasts of daily S&P

500 index, DJIA index and Nasdaq 100 index return volatilities. For the out-of-sample

forecasting, we employ the rolling window forecasting procedure with moving windows

of 500 trading days (a horizon of about two years)3 . The reason for this is that the

time horizon typically used for a market risk VaR calculation and 500 trading days is a

popular choice for the number of days of data used. We compare their one-step-ahead

(h = 1) and multi-step-ahead (h = 5, h = 10 and h = 22) forecasting performances as

well.

The forecast evaluation results of the three models are summarized in Tables 2.

From the first panel, we observe that the LHAR model performs the best in the in-

sample fitting for all assets considered. Our results show that the predictors based on

realized measures outperforms the predictors originating from implied volatility. This is

in consistent with the in-sample fitting result in HP.

The second panels of Tables 2 show that the LHAR model still outperforms the

HAR-RS and IV models in the one-step-ahead forecast for all criteria and assets. This

implies that the realized measure is more informative than implied volatility in the one-

step-ahead forecast. This result is different from the results of HP, which show that

the V IX index is more informative than the realized measure in the one-step-ahead

forecast. The difference could be the result of the using state-of-the-art model formwork.

As in their model formwork, HP employed a traditional GARCH-X model formwork. In

contrast, we use recent proposed time series model formwork for volatility forecasting,

which can well describe the dynamic dependencies of daily volatility.

The rest parts of Tables 2 unequivocally support the conclusion that the superiority

of the implied volatility indexes is in multi-step-ahead out-of-sample forecast and become

obvious with increasing forecast horizon. For the 5-step-ahead forecast, the average losses

of IV model are smaller than losses of the rest models, although the DMW test shows

that their forecasts are not different significantly. For the 10-step-ahead and 22-step-

ahead forecasts, the IV models have the smallest average losses in almost all the cases,

and the DMW test shows that the IV models are significantly better then the LHAR

and HAR-RS models, especially, for 22-step-ahead forecasts. Based on the discussion

above, we can draw the conclusion that the decay of informational content from realized

volatility is quicker than that from implied volatility. This can be at least partly explained

by the different informational content of each. The information of implied volatility

included the composition that reflect the option traders’ judgment on the market.

Additionally, it is shown that, considering the loss function with heavier penalty on

over-prediction as the evaluation criteria, the superiority of implied volatility indexes are

3Further details about rolling window forecasting scheme can see Han and Park [11].
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not significant. In contrast, in term of loss functions with heavier penalty on under-

prediction, the implied volatility indexes are superior to LHAR and HAR-RS models

significantly. And this become more distinct in the period of financial tsunami, as pre-

sented in Table 2A in Appendix. This is a new finding for relative studies. The new

finding shows that the forecast from the time series models of realized volatility were

more likely to make serious under-prediction. This can be partly explained by a very

high volatility period starting in 2007. When forecasting for longer horizons, events that

trigger sustained high levels of volatility, and a larger initial increase in realized volatil-

ities only later to be followed by delayed adjustment in the series forecasts, when the

larger observation becomes part of the in-sample estimation period (Martens and Zein

[16]).

We also evaluate the forecasting performance of models in the period of financial

tsunami starting from August 06, 2007 to January 01, 2009. For concise, we present

the result in Appendix. As shown in Table 2A, the forecasting performance is similar

with that for all sample period, excepting the losses become large and the superiority of

implied volatility improve slightly for long forecast horizon.

3. Combination of Realized Measure and Implied Volatility

In this section, we propose a novel model average approach for combining predictors,

and apply the proposed approach to combine predictors based on realized measures and

implied volatility.

3.1. Methodology for model combination

Suppose for generality that there are p models (forecasts) which could be combined

in order to forecast the variable of interest yh,t+h. Denote h-step-ahead forecasts from

competing models as {x̂(1)h,t+h, . . . , x̂
(p)
h,t+h} and consider the task of combining them in a

parsimonious manner. A family of linear forecast combinations had been widely adopted

starting from the seminal paper of Bates and Granger [4]. A linear forecast combination

is given as

yh,t+h =

p
∑

i=1

αix̂
(i)
h,t+h + εt+h, εt+h ∼ (0, σ2) (3.1)

where non-negative αi is the weight of the i-th model with
∑p

i=1 αi ≡ 1. Observably, in

this combination strategy the weights of candidate models are constant. Since employing

more flexible weights instead of constant weights may bring more precise forecasts. A

large number of forecasting literatures is devoted to seek more appropriate weighting

methods, such as Bayesian model average (BMA) approach (Liu and Maheu [14]) and

the empirical similarity (ES) approach (Golosnoy et al. [10]). These methods usually

combine individual model forecasts based on their predictive records, i.e., the weights

vary according to their forecast performance. Therefore, it is crucial to construct the

weight that can response to performance of individual model effectively in combining

realized measure and implied volatility.
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Table 2: Forecast evaluation results.

Model L(−2)× 102 L(−1)× 102 L(0) × 10 L(1) × 10 L(2)× 10

for in-sample forecasts

IV 4.099(7.06***) 3.684(5.74***) 0.951(4.17***) 2.313(3.70***) 8.213(3.27***)

4.192(7.21***) 3.777(5.51***) 0.979(3.91***) 2.307(3.56***) 8.289(3.21***)

4.037(7.73***) 4.205(7.55***) 1.139(6.61***) 0.979(5.44***) 2.053(4.43***)

HAR 2.968 2.485 0.591 1.055 3.884

3.103 2.622 0.632 1.163 4.458

2.820 2.582 0.640 0.546 1.220

HAR-RS 3.053(2.91**) 2.615(3.59***) 0.646(3.54***) 1.176(2.17**) 4.320(1.88*)

3.154(1.76*) 2.723(2.80**) 0.681(3.20***) 1.259(1.99**) 4.724(1.38)

2.902(3.28***) 2.731(4.62***) 0.699(4.62***) 0.611(4.02***) 1.371(3.36***)

for one-step-ahead forecasts (h = 1)

IV 4.055(5.75***) 3.472(4.85***) 0.851(3.73***) 0.765(2.93***) 1.868(2.20**)

4.047(5.72***) 3.425(4.59***) 0.839(3.42***) 0.771(2.64***) 1.950(2.16**)

3.680(5.55***) 3.315(4.79***) 0.774(3.61***) 0.631(2.57**) 1.392(1.65)

LHAR 3.129 2.510 0.593 0.548 1.448

3.232 2.601 0.614 0.567 1.492

3.005 2.570 0.601 0.512 1.208

HAR-RS 3.146(0.46) 2.569(1.36) 0.631(2.00**) 0.606(1.92*) 1.615(1.38)

3.232(0.00) 2.639(0.912) 0.649(1.81*) 0.630(2.09**) 1.720(2.03**)

3.043(1.21) 2.654(2.03**) 0.641(2.25**) 0.561(2.01**) 1.331(1.57)

for 5-step-ahead forecasts (h = 5)

IV 5.612(1.77) 4.965(1.65) 1.235(0.47) 1.107 2.657

5.531(1.18) 4.793(0.94) 1.178(0.08) 1.062 2.602

5.041(1.27) 4.518(0.56) 1.060 0.854 1.829

LHAR 5.472(1.90*) 4.821(1.98**) 1.237(1.51) 1.187(0.77) 3.100(1.09)

5.479(1.90*) 4.732(1.73*) 1.191(0.88) 1.147(0.62) 3.067(0.90)

4.941(1.08) 4.499(0.71) 1.088(0.78) 0.915(1.33) 2.060(1.53)

HAR-RS 5.378 4.729 1.206 1.144(0.35) 2.946(0.71)

5.367 4.640 1.171 1.130(0.46) 3.021(0.74)

4.884 4.455 1.076(0.45) 0.893(0.90) 1.952(0.96)

for 10-step-ahead forecasts (h = 10)

IV 6.632 5.976 1.495 1.319 3.075

6.528 5.745 1.413 1.248 2.951

5.918 5.319 1.240 0.975 2.018

LHAR 6.891(1.44) 6.189(1.55) 1.550(0.75) 1.403(0.67) 3.456(0.77)

6.805(1.55) 5.972(1.18) 1.486(0.78) 1.384(0.84) 3.577(1.02)

6.012(0.56) 5.532(1.26) 1.315(1.51) 1.055(1.43) 2.243(1.36)

HAR-RS 6.831(1.13) 6.191(1.01) 1.565(0.83) 1.408(0.86) 3.393(0.99)

6.722(1.10) 5.919(0.98) 1.487(1.49) 1.406(1.41) 3.692(1.16)

5.953(0.23) 5.497(1.27) 1.311(1.82*) 1.048(1.71*) 2.193(1.50)

for 22-step-ahead forecasts (h = 22)

IV 8.688 8.212 2.132 1.914 4.453

8.502 7.817 1.982 1.756 4.069

7.431 6.926 1.663 1.323 2.712

LHAR 9.531(2.51***) 9.272(2.89***) 2.519(2.40**) 2.445(1.90*) 6.324(1.67)

9.212(2.64***) 8.817(3.25***) 2.453(2.49**) 2.581(2.11**) 7.428(1.99**)

7.892(1.60) 7.681(2.54**) 1.885(2.61**) 1.497(2.18**) 3.022(1.71*)

HAR-RS 9.340(1.99**) 8.817(2.01**) 2.235(0.93) 1.948 (0.41) 4.4558(0.01)

9.017(1.97**) 8.451(2.60**) 2.206(2.25**) 2.080(1.86*) 5.286(1.78*)

7.696(1.06) 7.381(2.11**) 1.773(2.31**) 1.377(1.41) 2.735(0.27)

The loss L(·) is defined in Eq. (2.8) and the DMW test statistic defined in Eq. (2.9) is reported in parenthesis. Asterisks

indicate rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and ∗∗∗1% test.

The first (second and last) line of each panel is the evaluation results for S&P 500 (DJIA and Nasdaq 100).
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The work of Martens and Zein [16] hint that in highly volatile periods the volatility is

hard to be modeled as the models tend to be affected by structural breaks, and implied

volatility may give good predictions. In contrast, when the market is running stably,

stationarity of realized volatility is more reliable, and then models based on it may give

desired predictions. Given this fact, we present a novel approach of combination that

the weights depend on market condition.

Now let us assume that the performance of forecasts vary with the market condition

and at every market condition we always can find some forecasts that behave effectively.

This is in consistent with the existing empirical results that there is no dominating

forecast in all case up to now. In order to describe market condition we employ a vector

of variables Zt characterizing the current market state. Then the weights αi are replaced

by non-negative state-based frequencies φi(Zt), which sum up to unity and serve as

weights for the next-step forecast. The resulting forecast combination is given as

yh,t+h =

p
∑

i=1

φi(Zt)x̂
(i)
h,t+h + εt+h, εt+h ∼ (0, σ2) (3.2)

where the Zt denote current states of market condition. It usually consists of some market

indexes that can reflect market condition. In term of empirical application practitioners

need to select appropriate market indexes as Z for their implementation. It is also

pivotal to configure suitable weight functions φi(·). The proper weight functions are able
to distribute the weights between forecastors effectively and achieve good combination.

According to the above-mentioned fact that in highly volatile periods the implied

volatility may provide robust forecast and volatility can be modeled by realized mea-

sures well when market is stable, we choose realized volatilities RVt−p−1 · · ·RVt as state

variables to describe market conditions, i.e., Zt ≡ (RVt−p−1 · · ·RVt)
′. Then we specify

weight function φ(·) for implied volatility that goes up when market become volatile and

declines as market become stable. In this paper we exploit a flexible specification of the

exponential weight function, which is given as

φ(RVt−p · · ·RVt) =
exp(β(u − 1/u))

exp(β(u− 1/u)) + exp(−β(u− 1/u))
(3.3)

with

u =

p
∑

j=0

ωj
RVt−j

RV
(3.4)

that can be viewed as index of market condition and was constructed by using a natural

weighting scheme where weights decline exponentially. Where RV = 1
T

∑T
t=1 RVt is

the mean of realized volatility that reflect the average level of markets volatilities; and

ωj = λj(1 − λ)/(1 − λp+1) is the weight used to construct market index; (p + 1) is the

order of the model. The parameters λ ∈ (0, 1) deliver some information about how to

describe market condition, and it can be viewed as the discount rate of historical market

states. The large value of λ suggests that the model put more attention to the historical
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market conditions. The parameters β ∈ R, reflect the impact from the market condition

to the weight.

Obviously, the above weight function is a compound function of Eq. (3.3) and

Eq. (3.4). In order to demonstrate it more clearly, we examine the function Eq. (3.3).

The function Eq. (3.3) with various values of parameters β, ranging from −1.6 to 1.6

is present in Figure 2. This figure shows that this family of weight functions can take

a wide variety of shapes, ranging from increasing (β > 0) to decreasing (β < 0). As

shown in the Figure 2(a), when β > 0 the weight increase with the growth of variable

u, and the larger the value of β is, the more quick the increasing of the weight is. From

the Eq. (3.4) we can know that when the fluctuation of market goes close to the average

level, the value of u approaches to 0, and the weight goes close to 0.5 accordingly. When

the fluctuation of market is below (above) the average level, the value of u is smaller

(larger) than 0, and the weight is smaller (larger) than 0.5 accordingly. Therefore, when

market became volatile, greater (smaller) weight is given to implied volatility using the

weight function with parameter “β > 0” (“β < 0”).

Since the weights φi(·) have the property
∑p

i=1 φi(·) ≡ 1, the weights of predictor

based realized measures is 1 − φ(·). Therefore applying the new approach Eq. (3.2) to

the two forecasts produces the following specification, henceforth referred as States-Based

Average (SBA) model:

vh,t+h = θ1,tv̂
(iv)
h,t+h + θ2,tv̂

(rs)
h,t+h + εt+h, εt ∼ (0, σ2), (3.5)

where θ1,t = φ(RVt−p−1 · · ·RVt) and θ2,t = (1−θ1,t); v̂
(iv)
h,t+h is the volatility forecasts based

on implied volatility and v̂
(rs)
h,t is predictor from time series model of realized volatilities.

And then the model parameters can be estimated by means of MLE ( maximum likelihood

estimation).

In our empirical analysis, we employ forecast from HAR-RS model for predictor

using realized measures; and adopt IV model for predictor based on implied volatility,

i.e., v̂
(rs)
h,t+h from Eq. (2.5) and v̂

(iv)
h,t+h from Eq. (2.6). As shown in the empirical results of

Part 2.3, although the forecast from LHAR model (Eq. (2.4)) perform almost on a par

with that from HAR-RS model (Eq. (2.5)), the HAR-RS model behaves more robustly.

Therefore we choose HAR-RS model to produce predictor

3.2. Full sample estimation results

We use the same sample data of Section 2 to estimate the parameters applied in

the proposed model (SBA). The SBA model given in (3.5) with order of 15 (p = 14), is

estimated from the full sample with the maximum likelihood methodology by assuming

normality for the process innovations {εt+h}4 . The estimates of the parameters, the

corresponding t-statistics in parenthesis, are reported in Table 3.

4For choosing the order p, after trying different orders we find that for full sample fitting and out-ofsample
forecast choosing p = 14 can obtain better forecasting performance in most cases. Our choose based above-
mentioned fact.
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Figure 2: Weight functions for various choices of β.

The parameter estimates for the proposed model are economically reasonable. The

estimates of parameters β are significantly positive for all indices. This implies that

the increase of the index u enhances the weight of v̂
(iv)
h,t+h and consequently, raises the

importance of corresponding forecast v̂
(iv)
h,t+h as a part of the DGP of vh,t+h. This means

that the weight function gives large weight for predictor based on implied volatility

at volatile market conditions. This is economically reasonable, since in highly volatile

periods the volatility is hard to be modeled as the models tend to be affected by structural

breaks, and consequently, should be given small weight. In contrast, the implied volatility

reflect the opinion of market participants for future volatility and can adjust with market

conditions, so it is robust to provide good predictions.

Additionally, the estimate of parameter β for S&P 500 is almost equal to that for

DJIA, and is distinctly smaller than that for Nasdaq 100. The Figure 3 presents the

estimate of weight function for indexes considered. As shown in the figure, the shape

of weight function for Nasdaq 100 is steeper than others remarkably, although they are

increasing functions. This suggests that for Nasdaq 100, the forecasting performance of

predictors is more sensitive to change of market conditions. This is consistent with the

fact that the Nasdaq 100 consists of small firms whose prices are more affected by market

condition, consequently, persistence of volatility of Nasdaq 100 is weaker than that of

the other two indices. The estimate of parameters λ is greater than zero significantly.

This suggests that more recent observations should be given more weight because they

are more reflective of current volatilities and current macroeconomic conditions. This

indicates that our weighting scheme for construction of index u is reasonable. Therefore

parameter estimates for the proposed model are economically reasonable.

3.3. Evaluating combination for volatility forecast

In order to examine the effectiveness of the proposed model average approach, in

this subsection we compare it with several models in both in-sample and out-of-sample

forecasting performance. In particular, we compare the proposed approach with BMA

and ES approach in combining implied volatility and realized measure. For this purpose

we investigate the ES, BMA and SBA models. Where, the ES mode is that we apply ES
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Table 3: The full sample parameter estimates and the corresponding t-statistics.

Assets β λ σ

S&P 500 0.3358(2.92***) 0.6686(2.48***) 0.0659(10.63***)

DJIA 0.3526(2.98***) 0.8178(3.33***) 0.0691(8.36***)

Nasdq 100 1.3131(2.85***) 0.6682(6.63***) 0.0710(10.2***)

Asterisks indicate rejection of the null hypothesis of parameters equal to zero for
*10%, **5% and ***1% test.
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Figure 3: The estimate of weight function for each indexes.

approach of Golosnoy et al. [10] to combine v̂
(rs)
h,t+h and v̂

(iv)
h,t+h give as

vh,t+h =
θ1,tv̂

(rs)
h,t+h + θ2,tv̂

(iv)
h,t+h

θ1,t + θ2,t
+ εt+h, εt ∼ (0, σ2), (3.6)

with θ1,t = exp
(

− ω1(vh,t − v̂
(rs)
h,t+h)

2
)

and θ2,t = exp
(

− ω2(vh,t − v̂
(iv)
h,t+h)

2
)

. And the

BMA model is that we use BMA methods of Liu and Maheu [14] to combine and more

details can be found in their paper. Additionally, we conside the simplest approach that

incorporates implied volatility into model Eq. (2.5) as an exogenous covariate (denoted

by HAR-RS-IV model)

RVh,t+h = α0 + α1RS+
t + α2RS−

t + α3RV
(w)
t + α4RV

(m)
t + βIVt + εt+h. (3.7)

Obviously, this model is the simplest way to combine information extracted from

realized volatility and implied volatility for volatility forecasting. To run a complete

forecast comparison we adopt the family of homogenous loss functions given in Eq. (2.8)

again.
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3.3.1. In-sample forecast evaluation

Table 4 reports the in-sample forecast evaluation result of the six models. The

results show that the HAR-RS-IV model outperforms the rest models except ES model

significantly in the within-sample fitting for all criteria considered. This implies that the

implied volatility have extra information for the within-sample fitting. The finding is

interesting that the simplest combination is more effective than the sophisticated models

in using all information for the within-sample fitting. This finding is important for

selecting model to fit volatility dynamic. But practitioners are more concerned with

their out of sample forecasting performance, since many decisions are based on out-

of-sample forecast. Therefore the next sections we exam their out of sample forecast

extensively.

Table 4: Average values of the in-sample losses for the considered models estimated based on the
full sample information.

Model L(−2) × 102 L(−1) × 102 L(0) × 10 L(1) × 10 L(2) × 10

Estimation results for S&P 500

IV 4.101(8.98***) 3.682(6.74***) 0.950(4.83***) 0.876(3.69***) 2.117(2.75***)

HAR-RS 3.054(2.56***) 2.613(3.96***) 0.646(3.97***) 0.587(3.16***) 1.449(2.48***)

HAR-RS-IV 2.970(0.27) 2.514 0.616 0.558 1.374

ES 2.960 2.524(0.30) 0.622(0.52) 0.566(0.67) 1.403(0.97)

BMA 3.055(2.59***) 2.614(3.96***) 0.645(3.96***) 0.586(3.16***) 1.448(2.49***)

SBA 3.164(3.44***) 2.949(3.56***) 0.810(3.39***) 0.792(3.06***) 1.992(2.49***)

Estimation results for DJIA

IV 3.780(6.76***) 3.315(5.73***) 0.774(4.16***) 0.631(2.76***) 1.392(1.52)

HAR-RS 3.043(2.13***) 2.654(3.07***) 0.641(3.00***) 0.561(2.27***) 1.331(1.44)

HAR-RS-IV 2.950 2.522 0.598 0.521 1.253

ES 2.979(0.72) 2.600(1.70) 0.630(1.66) 0.554(1.32) 1.315(0.89)

BMA 3.075(2.87***) 2.681(3.66***) 0.647(3.40***) 0.569(2.65***) 1.357(1.93*)

SBA 3.358(4.37***) 2.984(3.88***) 0.715(3.04***) 0.600(2.15**) 1.352(1.13)

Estimation results for Nasdaq100

IV 4.045(9.53***) 4.199(8.77***) 1.132(7.64***) 0.969(6.29***) 2.026(4.57***)

HAR-RS 2.909(4.04***) 2.728(3.94***) 0.694(2.31**) 0.603(1.41) 1.349(1.10)

HAR-RS-IV 2.836(0.66) 2.668 0.682 0.595 1.334

ES 2.825 2.670(0.09) 0.685(0.58) 0.598(0.65) 1.342(0.68)

BMA 2.907(3.95***) 2.724(3.75***) 0.693(2.12**) 0.602(1.27) 1.348(1.00)

SBA 3.512(6.93***) 3.687(6.76***) 1.018(6.15***) 0.896(5.26***) 1.923(3.97**)

Asterisks indicate rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and
∗∗∗1% test.

3.3.2. Out-of-sample forecast evaluation

For the out-of-sample forecasting, we employ the rolling window forecasting proce-

dure with moving windows of 500 trading days. This is same to Section 2.3, where we

give the reason for the choice. We conduct one-step-ahead (h = 1) as well as multi-

step-ahead (h = 5, h = 10 and h = 22) forecasts. Note that for SBA and ES models

there exist some difference in forecasting methodology from other models. Since they

need to use the forecasts of component models, for each rolling window the forecasting
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procedure must be divided into two steps. Firstly, we obtain 250 out-of-sample forecasts

for each component model, employing the rolling window forecasting procedure with

moving sub-windows of 250 trading days confined in the moving window of 500 trading

days5 . Secondly, using out-of-sample forecasts obtained in the first step, we estimate

the parameters of the SBA and ES models, and then use the estimation values to obtain

out-of-sample forecasts. For the order of the SBA model we adopt p = 14 to conduct

out-of-sample forecast.

Table 5: Average losses of one-step-ahead forecasts.

Model L(−2)× 102 L(−1) × 102 L(0) × 10 L(1) × 10 L(2) × 10

Estimation results for S&P 500

IV 4.055(7.61***) 3.472(6.12***) 0.852(4.24***) 0.766(2.86***) 1.868(1.94*)

HAR-RS 3.146(3.72***) 2.569(3.64***) 0.631(2.62***) 0.606(1.97*) 1.615(1.73)

HAR-RS-IV 3.006 2.452 0.599 0.569 1.508

ES 3.112(2.55***) 2.528(2.19***) 0.617(1.36) 0.589(1.00) 1.566(0.89)

BMA 3.141(3.58***) 2.567(3.51***) 0.630(2.58***) 0.605(1.96*) 1.613(1.73)

SBA 3.592(5.39***) 3.092(4.27***) 0.778(3.17***) 0.722(2.32**) 1.806(1.65)

Estimation results for DJIA

IV 4.048(7.52***) 3.425(5.89***) 0.839(3.96***) 0.771(2.68***) 1.950(1.86*)

HAR-RS 3.232(2.96***) 2.639(2.79***) 0.649(2.43**) 0.630(2.27**) 1.720(2.11**)

HAR-RS-IV 3.119 2.538 0.616 0.584 1.559

ES 3.196(1.95*) 2.596(1.74) 0.634(1.50) 0.615(1.58) 1.680(1.72)

BMA 3.224(2.79***) 2.636(2.68***) 0.649(2.40**) 0.630(2.27**) 1.720(2.12**)

SBA 3.581(4.80***) 3.045(3.82***) 0.764(2.85***) 0.724(2.14**) 1.874(1.60)

Estimation results for Nasdaq100

IV 3.780(6.76***) 3.315(5.73***) 0.774(4.16***) 0.631(2.76***) 1.392(1.52)

HAR-RS 3.043(2.13**) 2.654(3.07***) 0.641(3.00***) 0.561(2.27**) 1.331(1.44)

HAR-RS-IV 2.950 2.522 0.598 0.520 1.253

ES 2.979(0.72) 2.600(1.70) 0.630(1.66) 0.554(1.32) 1.315(0.89)

BMA 3.075(2.87***) 2.681(3.66***) 0.647(3.40***) 0.569(2.65***) 1.357(1.93*)

SBA 3.358(4.37***) 2.984(3.88***) 0.715(3.04***) 0.600(2.15**) 1.352(1.13)

Asterisks indicate rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and
∗∗∗1% test.

Employing robust loss function given in Eq. (2.8), the out-of-sample forecast evalua-

tion results of the interesting models are summarized in Tables 5-8. From the Table 5, we

observe that the results concerning one-step-ahead forecast performance is similar to that

for within-sample fitting. The HAR-RS-IV model maintains preeminence in one-step-

ahead forecast performance, although its superiority have weakened slightly according

to corresponding DMW tests. This shows that it is the most effective model in using

all information for the one-step-ahead forecast. This is reasonable because the model

with good fitting usually can bring favorable out-of-sample forecast when the forecasting

horizon is narrow enough.

As shown in the Table 6, for 5-step-ahead forecast the average loss of the proposed

model (SBA) is the smallest in most cases. This suggests that SBA model has taken

5The size of subwindows is not always equal to the number of the out-of-sample forecasts within each rolling
window. This can be adjusted according to the number of parameters that need to be estimated.
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over merits from HAR-RS-IV model (which performs the best in within-sample fitting

and one-step-ahead forecasting) and outperforms the rest of the models in the 5-step-

ahead forecast evaluation. This implies that the SBA model is more effective than the

rest models in utilizing information from implied volatility and realized measures for the

5-step-ahead forecast.

The Table 7 report the evaluation results of 10-step-ahead forecast. As reported in

the table, the average loss of the SBA model maintain the smallest for all criteria and

assets, and the t-value of DMW test for null hypothesis of equal predictability to the

smallest loss model have reached significant level, especially for that based on the loss

L(−2), L(−1) and L(0). This suggests that the 10-step-ahead forecast of the SBA model

is significantly better than that of the rest models. Comparing Table 7 with Table 6,

we observe that for the 10-step-ahead forecast the superiority of SBA model are more

obvious. This implies that in utilizing information from implied volatility and realized

measures for volatility forecast, the SBA model becomes more effective as the forecast

horizon increase to 10 trading days. As we have mentioned in the introduction, 10-

trading-day-ahead volatility forecast is key important for risk management. Therefore

these improvement will benefit the field of risk management.

The Table 8 present the evaluation results of 22-step-ahead forecast. The results

are similar to that of 10-step-ahead forecast. The proposed model retains the lead in

the 22-step-ahead forecast and was followed by ES model closely. And the DMW test

shows that their forecasts are not significantly different. This is not surprising, because

the IV model dominates HAR-RS model for 22-step-ahead forecast (see the empirical

results of Section 2.3), and both SBA and ES models give larger weight to IV model

than HAR-RS model. So they perform similar for 22-step-ahead forecast.

Additionally, considering the average losses of L(1), L(2) from Table 6−8 and ac-

cording to the asymmetric penalty feature of the loss functions, the IV model was able

to reduce overestimation for the multi-step-ahead forecast. This is a new finding for

relative empirical study. The finding is pivotal for improving volatility forecasts.

In Sum, firstly we find that the HAR-RS-IV model outperforms the rest models

significantly for the within-sample fitting and the one-step-ahead forecast. The finding is

interesting for the fact that the simplest combination is more effective than the sophisti-

cated models in using all information for the within-sample fitting and the one-step-ahead

forecast.

Secondly, there is a new finding for relative empirical study that IV model is able

to reduce overestimation for the multi-step-ahead forecast. The finding is pivotal for im-

proving volatility forecasts. Finally, the proposed model performs the best for multi-step-

ahead out-of-sample forecast, especially for 10-step- ahead and 22-step-ahead forecast.

This implies that the proposed model is able to utilize information from implied volatil-

ity and realized measures effectively for multi-step-ahead forecast. Since 10-trading-day-

ahead volatility forecast is extremely important for risk management, these improvement

will benefit the field of risk management remarkably.
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Table 6: Average losses of 5-step-ahead forecasts.

Model L(−2)× 102 L(−1)× 102 L(0)× 10 L(1)× 10 L(2) × 10

Estimation results for S&P 500

IV 5.612(3.65***) 4.965(2.57***) 1.235(6.82***) 1.107(5.02***) 2.657(3.03***)

HAR-RS 5.378(3.84***) 4.729(2.45**) 1.206(0.35) 1.144(0.69) 2.946(0.84)

HAR-RS-IV 5.232 4.638 1.203(0.27) 1.167(0.79) 3.075(0.98)

ES 5.342(1.83*) 4.745(1.13) 1.202(0.80) 1.099(1.06) 2.675(1.14)

BMA 5.410(4.32***) 4.773(3.12***) 1.217(0.54) 1.149(0.74) 2.950(0.85)

SBA 5.367(1.75) 4.737(0.91) 1.186 1.075 2.612

Estimation results for DJIA

IV 5.531(2.87***) 4.793(1.70) 1.178(6.04***) 1.062(4.02***) 2.602(2.21**)

HAR-RS 5.369(3.18***) 4.640(2.44**) 1.171(0.57) 1.130(0.74) 3.021(0.84)

HAR-RS-IV 5.233 4.554 1.164(0.47) 1.139(0.79) 3.071(0.92)

ES 5.311(1.47) 4.668(1.56) 1.204(1.36) 1.175(1.40) 3.127(1.34)

BMA 5.376(3.56***) 4.661(2.96***) 1.177(0.65) 1.133(0.76) 3.023(0.84)

SBA 5.277(0.58) 4.565(0.10) 1.129 1.030 2.556

Estimation results for Nasdaq100

IV 5.041(7.07***) 4.518(6.80***) 1.060(5.64***) 0.854(3.70***) 1.829(1.97*)

HAR-RS 4.884(1.56) 4.455(1.77) 1.076(1.64) 0.893(1.36) 1.952(1.14)

HAR-RS-IV 4.777(0.30) 4.358(0.60) 1.070(1.00) 0.925(1.22) 2.148(1.34)

ES 4.772(0.45) 4.349(1.22) 1.043(1.43) 0.855(1.33) 1.847(1.19)

BMA 4.933(2.40**) 4.529(2.40**) 1.116(1.90*) 0.965(1.60) 2.229(1.42)

SBA 4.759 4.309 1.026 0.838 1.812

Asterisks indicate rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and
∗∗∗1% test.

Table 7: Average losses of 10-step-ahead forecasts.

Model L(−2)× 102 L(−1) × 102 L(0) × 10 L(1) × 10 L(2) × 10

Estimation results for S&P 500

IV 6.632(3.45***) 5.976(3.61***) 1.495(3.22***) 1.319(2.17**) 3.075(1.18)

HAR-RS 6.831(3.52***) 6.143(2.97***) 1.544(1.88*) 1.400(1.38) 3.424(1.20)

HAR-RS-IV 6.619(1.93*) 6.045(2.08**) 1.560(1.80*) 1.458(1.57) 3.671(1.32)

ES 6.543(3.23***) 5.915(3.39***) 1.482(2.55***) 1.310(1.49) 3.057(0.68)

BMA 6.740(3.34***) 6.098(2.87***) 1.546(1.95*) 1.410(1.51) 3.458(1.29)

SBA 6.446 5.809 1.456 1.292 3.033

Estimation results for DJIA

IV 6.528(4.05***) 5.745(4.28***) 1.413(4.01***) 1.248(2.93***) 2.951(1.69)

HAR-RS 6.722(3.41***) 5.919(2.60***) 1.487(1.55) 1.406(1.35) 3.692(1.25)

HAR-RS-IV 6.539(2.43**) 5.829(2.12**) 1.490(1.58) 1.426(1.46) 3.761(1.31)

ES 6.463(3.67***) 5.710(4.27***) 1.406(3.71***) 1.243(2.40**) 2.941(1.27)

BMA 6.627(3.45***) 5.886(2.58***) 1.492(1.62) 1.416(1.42) 3.715(1.29)

SBA 6.330 5.577 1.375 1.222 2.912

Estimation results for Nasdaq100

IV 5.918(6.03***) 5.319(5.23***) 1.240(3.88***) 0.975(2.36**) 2.018(1.36)

HAR-RS 5.953(3.24***) 5.497(3.52***) 1.311(2.88***) 1.048(2.08**) 2.194(1.66)

HAR-RS-IV 5.848(2.80***) 5.391(2.59***) 1.308(1.91**) 1.094(1.64) 2.436(1.40)

ES 5.695(2.98***) 5.196(2.95***) 1.225(2.24**) 0.970(1.31) 2.011(0.66)

BMA 5.872(2.74***) 5.430(2.82***) 1.321(2.06**) 1.112(1.63) 2.504(1.34)

SBA 5.630 5.138 1.214 0.965 2.007

Asterisks indicate rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and
∗∗∗1% test.
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Table 8: Average losses of 5-step-ahead forecasts.

Model L(−2) × 102 L(−1) × 102 L(0) × 10 L(1) × 10 L(2) × 10

Estimation results for S&P 500

IV 8.688(2.41**) 8.212(2.09**) 2.132(2.49**) 1.914(3.15***) 4.453(2.98***)

HAR-RS 9.339(3.94***) 8.817(3.38***) 2.235(2.09**) 1.948(0.87) 4.456(0.33)

HAR-RS-IV 9.418(3.42***) 8.976(3.12***) 2.285(2.33***) 1.986(1.27) 4.518(0.58)

ES 8.517(0.56) 8.123(0.70) 2.120(1.00) 1.912(1.16) 4.468(1.19)

BMA 9.054(3.12***) 8.591(2.83***) 2.196(1.66) 1.930(0.64) 4.439(0.25)

SBA 8.486 8.088 2.103 1.885 4.384

Estimation results for DJIA

IV 8.502(2.81***) 7.817(2.41**) 1.982(1.99**) 1.756(1.20) 4.069(0.26)

HAR-RS 9.017(3.91***) 8.451(4.07***) 2.206(2.79***) 2.080(2.07**) 5.286(1.71)

HAR-RS-IV 9.150(3.99***) 8.641(4.12***) 2.260(3.06***) 2.124(2.19**) 5.390(1.76)

ES 8.235 7.677(0.32) 1.965(0.89) 1.750(0.75) 4.064(0.18)

BMA 8.842(3.29***) 8.344(3.62***) 2.194(2.66***) 2.078(2.05**) 5.289(1.71)

SBA 8.242(0.13) 7.663 1.955 1.740 4.058

Estimation results for Nasdaq100

IV 7.431(4.85***) 6.926(3.67***) 1.663(2.56***) 1.324(2.07**) 2.712(2.08**)

HAR-RS 7.696(3.89***) 7.381(4.28***) 1.773(3.56***) 1.377(1.85***) 2.735(0.55)

HAR-RS-IV 7.642(3.52***) 7.306(3.79***) 1.760(3.26***) 1.378(1.98**) 2.765(1.00)

ES 7.0883(0.19) 6.7648(0.65) 1.6507(1.30) 1.323(2.08**) 2.713(2.45**)

BMA 7.511(3.28***) 7.204(3.64***) 1.737(2.83***) 1.358(1.33) 2.713(0.27)

SBA 7.080 6.741 1.641 1.314 2.692

Asterisks indicate rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and
∗∗∗1% test.

4. Conclusion

In this paper we reinvestigate the forecasts of volatility obtained from the implied

volatility and the series models of realized volatilities. The differences between our work

and previous studies are that we adopt a family of homogenous loss functions as the

evaluation criteria and use wider sample data. To run a fair and complete forecast

comparison we employ a family of homogenous loss functions as the evaluation criteria.

The comparison is based on in-sample and out-of-sample forecasts of daily S&P 500

index, DJIA index and Nasdaq 100 index return volatilities for recent long period.

Our empirical results of comparison show that, predictors based on realized measures

are superior to that derived from implied volatility for within-sample fitting. This is

consistent with the previous studies. For out-of-sample forecast, the realized measures

are more informative than implied volatility in the one-step-ahead forecast. Our result

is different from the results of HP. The reason for the difference may be due to the fact

that we employ state of the art model of realized measures. Whereas the superiority of

the implied volatility indexes is in multi-step-ahead forecast and becomes obvious with

increasing forecast horizon. Additionally, it is shown that, considering the loss function

with heavier penalty on over-prediction as the evaluation criteria, the implied volatility

indexes are not able to outperform LHAR andHAR-RS models significantly. In contrast,

in term of loss functions with heavier penalty on under-prediction, the implied volatility

indexes are superior to LHAR and HAR-RS models, and become more distinct in the



COMPARING AND COMBINING REALIZED MEASURE AND IMPLIED VOLATILITY 301

period of financial tsunami. These are new findings that add to the findings of previous

studies. And it is also of importance for risk management.

Secondly, in view of above empirical result that two types of predictors show com-

plementary strengths in the volatility forecasting performance, we propose a new model

average approach to combine them in order to obtain more excellent forecast in spirit

of complementary advantages. The new approach sets the weights of the com- ponent

models depending on the market conditions. Consequently, we use realized volatility to

construct an index describing market condition, and specify a flexible weight function.

And the obtained estimation results confirm that the proposed approach is economically

reasonable.

Finally, adopting a family of homogenous loss functions as the evaluation criteria, we

compare proposed approach with naive model (HAR-RS-IV), the empirical similarity

(ES) approach and Bayesian models average approach in combining realized measures

and implied volatility for volatility prediction. There are some interesting findings in

our empirical results: Firstly we find that the HAR-RS-IV model outperforms the rest

models significantly for the within-sample fitting and the one-step-ahead forecast. The

finding is interesting for the fact that the simplest combination is more effective than

the sophisticated models in using all information for the within-sample fitting and the

one-step-ahead forecast. Secondly, there is a new finding for relative empirical study

that IV model was able to reduce overestimation for the multi-step-ahead forecast. The

finding is pivotal for improving volatility forecasts. Finally, the proposed model performs

the best for multi-step-ahead out-of-sample forecast, especially for 10-step-ahead and 22-

step-ahead forecast. This implies that the proposed model is able to utilize information

from implied volatility and realized measures effectively for multi-step-ahead forecast.

Since 10-trading-day-ahead volatility forecast is important for risk management, these

improvement will benefit the field of risk management remarkably, especially for fore-

casting the VaR of market risk. Obviously, our empirical results are consistent with the

existing empirical result that there is no dominating forecast up to now.
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Appendix

Table 2A: Forecast evaluation results for period of financial tsunami.

Model L(−2) × 102 L(−1) × 102 L(0) × 10 L(1) × 10 L(2) × 10

for in-sample forecasts

IV 6.197(3.38***) 9.827(3.22***) 3.965(2.87**) 14.59(2.89**) 58.31(2.62**)

5.985(3.40***) 9.333(3.04***) 3.783(2.65**) 13.92(2.79**) 55.69(2.56**)

7.433(4.17***) 10.58(3.88***) 3.700(3.27***) 11.63(3.30***) 39.18(2.83**)

LHAR 3.300 4.775 1.870 5.615 25.43

3.300 4.679 1.811 5.759 26.76

3.446 4.872 1.793 4.411 17.75

HAR-RS 3.452(1.47) 5.247(2.27**) 2.165(2.47**) 6.163(1.25) 27.82(1.18)

3.390(0.84) 5.080(1.93*) 2.092(2.35**) 6.032(0.74) 27.50(0.44)

3.727(2.83**) 5.468(3.09***) 2.071(2.82**) 5.082(1.69*) 20.22(1.52)

for one-step-ahead forecasts (h = 1)

IV 5.358(3.24***) 8.145(3.20***) 3.172(2.88**) 3.871(2.36**) 11.26(1.68*)

5.288(3.29***) 7.855(3.12***) 3.071(2.78**) 3.807(2.46**) 11.23(2.14**)

4.919(3.14***) 7.009(2.99***) 2.493(2.29**) 2.753(1.50) 7.392(1.65)

LHAR 3.402 4.886 1.951 2.608 8.521

3.498 4.920 1.908 2.463 7.760

3.485 4.985 1.875 2.246 6.399

HAR-RS 3.590(1.37) 5.468(2.32**) 2.285(2.36**) 3.085(1.84*) 9.850(1.21)

3.566(0.47) 5.353(1.82*) 2.222(2.37**) 2.998(2.3**) 9.612(2.06**)

3.777(2.36**) 5.639(2.61**) 2.179(2.19**) 2.615(1.69*) 7.310(1.23)

for 5-step-ahead forecasts (h = 5)

IV 8.129(0.01) 12.49(0.21) 4.876 5.906 16.82

7.988(0.03) 11.94(0.23) 4.621 5.593 15.92

7.268 10.47 3.715 4.025 10.22

LHAR 8.437(1.30) 12.69(1.42) 5.104(0.49) 6.596(0.82) 20.31(1.04)

8.311(1.40) 11.96(0.95) 4.761(0.23) 6.220(0.57) 19.45(0.85)

7.830(1.10) 10.99(0.87) 3.938(0.86) 4.438(1.03) 11.89(1.22)

HAR-RS 8.125 12.31 4.924 6.286(0.46) 19.10(0.71)

7.968 11.70 4.686 6.118(0.46) 19.09(0.71)

7.710(0.94) 11.06(1.02) 3.953(0.99) 4.325(0.90) 11.07(0.82)

for 10-step-ahead forecasts (h = 10)

IV 10.47 16.02 6.131 7.175 19.61

10.34 15.40 5.811 6.743 18.31

9.104 13.10 4.546 4.730 11.46

LHAR 11.89(1.94*) 17.43(1.37) 6.572(0.86) 7.891(0.77) 22.84(0.87)

11.36(1.26) 16.26(0.72) 6.265(0.61) 7.822(0.89) 23.48(1.13)

10.08(1.23) 13.86(0.79) 4.786(0.70) 5.116(0.91) 12.94(1.15)

HAR-RS 12.29(2.34**) 17.83(1.97**) 6.718(1.38) 8.007(1.17) 22.82(1.88*)

11.45(1.39) 16.56(1.08) 6.447(1.01) 8.129(1.18) 24.64(1.33)

10.26(1.95*) 15.41(1.87*) 4.986(1.64) 5.232(1.47) 12.81(1.38)

for 22-step-ahead forecasts (h = 22)

IV 16.59 25.69 9.76 11.20 29.84

16.02 24.22 9.03 10.17 26.59

13.53 19.91 6.92 7.06 16.58(0.12)

LHAR 21.72(3.67***) 33.03(3.25***) 12.87(2.60***) 15.73(2.12**) 45.83(1.85*)

19.84(3.32***) 30.40(2.99***) 12.61(2.34**) 16.93(2.10**) 54.49(2.00**)

17.27(2.62***) 24.22(2.33**) 8.141(2.01**) 8.127(1.73**) 18.78(1.73*)

HAR-RS 20.85(3.04***) 29.65(2.42***) 10.55(1.51) 11.61(0.66) 30.35(0.26)

719.29(3.78***) 28.10(2.64***) 10.67(2.14**) 12.83(1.87*) 36.80(1.81*)

16.27(2.67***) 22.36(2.29**) 7.354(1.52) 7.215(0.52) 16.49

The loss L(·) is defined in (2.8) and the DMW test statistic defined in (2.9) is reported in parenthesis. Asterisks indicate

rejection of the null hypothesis of equal predictability to the smallest loss model for ∗10%, ∗∗5% and ∗∗∗1% test. The first

(second and last) line of each panel is the evaluation results for S&P 500 (DJIA and Nasdaq 100).
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