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Abstract

Hesitant fuzzy sets (HFSs) proposed by Torra and Torra and Narukawa have been proved

to be more practical in handling fuzziness. The feature of HFSs to assign membership degrees

in the form of a set has made them very useful for solving multiple attribute decision making

(MADM) problem. In this communication, we have introduced a new exponential hesitant

fuzzy entropy based on well-known exponential entropy studied by Pal and Pal. The proposed

entropy is then used for solving MADM problem. The attributes weights play an important

role in solution of MADM problem. In this study, two methods are discussed to determine

attributes weights. Finally, two numerical examples are given to illustrate the effectiveness

and feasibility of proposed method.

Keywords: Hesitant fuzzy set, VIKOR, MADM.

1. Introduction

In a Multiple Attribute Decision Making (MADM) problem, our aim is to select the

best alternative satisfying all the attributes. Sometimes, the criterion involved are so

confusing and commensurate that to take a final call becomes a herculean task. Several

methods and tools have been developed to solve MADM problems. Before the intro-

duction of fuzzy set theory by Zadeh [52], probability was the only way to measure the

uncertainty. But in day-to-day life, not all type of uncertainty can be quantified using

probability, for example, low price, fast speed, very smart etc. This is due to the fact

that such type of vague terms cannot be expressed as precise values. To handle such

type of imprecise and imperfect information, fuzzy set theory proposed by Zadeh [52] has

proved to be an effective tool. Judging the powerfulness of fuzzy set, many researchers

from across the world attracted towards it and several extensions of fuzzy sets were pro-

posed. Type-2 fuzzy sets (see Zadeh [53]), intuitionistic fuzzy sets (see Atanassov [1]),

interval-valued intuitionistic fuzzy (see Atanassov and Gargove [2]) sets are some well-

known extensions of fuzzy sets. The proposal of intuitionistic fuzzy entropy by Burillo

and Bustince [4] caused the researchers across the world to introduce the information

measures from their viewpoints (see Joshi and Kumar [15], Joshi and Kumar [20], Joshi
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and Kumar [21], Joshi [22], Joshi and Kumar [23]). All these extensions are based on the

rationale that it is not clear to assign the membership degree of an element to a fixed set

(see Torra and Narukawa [43], Torra [44]). All of the extensions of fuzzy sets including

fuzzy sets themselves are based on one precise value of membership degree. But this is

too ideal to match in our daily life. In practical, it is not always possible that all the

decision makers assign same membership degree to an alternative with respect to same

attribute. This can be better understood with the help of an example.

Consider an example of a company run by its governing council (GC) consisting of

several decision makers. All the members of GC may have different qualifications, back-

grounds, expertise and knowledge. If the company have to make a decision regarding an

alternative corresponding to an attribute then all the members of GC may not assign the

same membership degree to the alternative. Some members will provide .3 as assessment

value, some will assign .6 and some others may give evaluation of .7. The three groups

cannot persuade each other. Thus, the best way to completely represent this situation is

the set of values given by {.3, .6, .7} than crisp numbers or interval-valued fuzzy numbers,

that is, [.3, .7] or intuitionistic fuzzy numbers (.3, .7). Thus, the above situation cannot

be represented completely by using any of the extensions of fuzzy sets.

To handle such situation, Torra and Narukawa [38] and Torra [39] introduced a

new generalization of fuzzy sets called Hesitant Fuzzy Sets (HFSs). Although, HFS

does not allocate an exact membership degree, it depicts the fuzziness through a set

of possible values of membership degree. Thus, HFSs are more closer to reality than

other extensions of fuzzy sets. Due to its proximity to real world problems, many and

many authors are attracting towards HFSs and giving their applications in distinct fields

(see Rodriguez et al. [36], Wei [45], Xia and Xu [47], Xu and Xia [48], Liang et al.

[28]). Recently, Singh and Lalotra [39], Singh et al. [40], Singh et al. [41] proposed

generalized correlation coefficients and applied them to clustering analysis in hesitant

fuzzy settings, Yang and Hussain [50] constructed new distance and similarity measures

between HFSs based on Hausdorff metric and applied them in clustering, and Yao and

Wang [51] proposed a new concept of hesitant intuitionistic fuzzy sets (HIFSs) to capture

the uncertain information by refining dual HFS and gave their applications in medical

diagnosis and decision making.

A MADM problem can be characterized by selecting the most suitable alternative

from a set of feasible alternatives satisfying a certain set of attributes. Ratings of al-

ternatives depend upon the criterion involved. The criterion for different problems are

different. For example, the criteria for buying a car cannot be same as the criteria for

selecting the school for the child. So, the criteria should be established according to the

reality of the problem. A large amount of research has been done on evaluation of al-

ternatives and several methods and techniques have been proposed so far in this regard.

Ribeiro [37] surveyed all the methods in detail and made a comparison of all. However,

there exists no solution satisfying the entire criterion simultaneously, this makes the de-

cision making process very interactive. One common example is the relation between

development possibility and protection of environment. Pareto [34] tried to address this

problem by arguing that if one criteria is to be improved then some other will have to be
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made worst. This was the case when all alternatives are non-inferior, but this cannot be

applied to the case where one best alternative is to be selected from a set of alternatives.

The solution to this problem was provided by Yu [49] by suggesting a compromise solu-

tion using compromise programming. In this method, the alternative nearest to the ideal

solution was considered as the best alternative. Based on the concept proposed by Yu

[49], many decision making methods such as TOPSIS (Technique for Order Preference

by Similarity to Ideal Solution) (see Hwang and Yoon [12]), PROMETHEE (Preference

Ranking Organization Method for Enrichment Evaluations) (see Brans and Mareschal

[3]) and VIKOR (Vlsekriterijumska Optimizacija i Kompromisno Resenje) (see Opricovic

and Tzeng [31] etc. were introduced. On comparing the TOPSIS method and VIKOR

method, Opricovic and Tzeng [31] pointed out that though the two methods are based

on the relative distances from ideal solutions but the TOPSIS method does not provide

the compromise solution. Furthermore, Opricovic and Tzeng [32] extended the VIKOR

method by adding a stability analysis and established that use of VIKOR method is

more advantageous than other existing methods. Recently, Liang et al. [28] extended

the VIKORmethod to pythagorean fuzzy environment and proposed two decision making

methods by combining TODIM (see Gomes and Rangel [11]) and VIKOR methods.

From the above discussion, the importance of HFSs and VIKOR method can be

easily judged. However, a lot of research has been done on solving MADM problems

using fuzzy sets and intuitionistic fuzzy sets, but a very little research has been done

on solving MADM problems where ratings of alternatives are expressed by using HFSs.

This communication is a sequel in this direction. The prime aims of introducing this

communication are: (1). To introduce an exponential hesitant fuzzy entropy based on

the exponential entropy studied by Pal and Pal [33], (2). To introduce a new MADM

method based on the proposed hesitant fuzzy entropy and using the concept of VIKOR

method. To do so, the present communication is managed as follows: The contribution of

earlier researchers in the field and the prime aim of this paper are given in the Section 1.

Some basic concepts necessary to understand the topic under study are given in Section

2. A new hesitant fuzzy entropy is proposed in Section 3. A new MADM method based

on the proposed entropy is introduced in Section 4. In Section 5, the proposed MADM

method is explained with the help of two numerical examples. At last, the paper is

concluded wih ‘Conclusions’ in Section 6.

In next Section, we give some basic concepts and definitions regarding HFSs.

2. Preliminaries

Definition 1 (Fuzzy Set (see Zadeh [52]). Let X = (g1, g2, . . . , gn) be a finite universe

of discourse. A fuzzy set G̃ on X is defined as

G̃ = {〈gi, µG̃(gi)〉 | gi ∈ X}, (2.1)

where µ
G̃

: X → [0, 1] represents the membership function and the number µ
G̃
(gi)

denotes the membership degree.
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Torra and Narukawa [43] generalized the concept of FSs to HFSs as follows:

Definition 2 (Hesitant Fuzzy Set (see Torra and Narukawa [43], Torra [44])). For a

finite universe of discourse X = (g1, g2, . . . , gn), the HFS is given by:

E = {〈gi, ψE(gi)〉 | gi ∈ X}, (2.2)

where ψE : X → [0, 1] returns a subset of [0, 1] and ψE(gi) is a set of values in [0, 1]. For

convenience sake, Xia and Xu [42] named ψE(gi) as Hesitant Fuzzy Element (HFE) and

set of all HFEs will be denoted by ΨE. In case, if there is only one value in ψE(gi) then

it will be reduced to FS. In this way, HFS is the generalization of FS.

Definition 3 (Manhattan Distance). For any two HFEs ψE1 and ψE2 , the Manhattan

distance d(ψE1 , ψE2) is given by

d(ψE1 , ψE2) =
1

lψ

lψ∑

i=1

∣∣∣ψσ(i)E1
− ψ

σ(i)
E2

∣∣∣ , (2.3)

where ψ
σ(i)
E1

and ψ
σ(i)
E2

are the ith largest values in ψE1 and ψE2 , respectively and lψ

denotes the length of ψE. For example, consider two HFEs, that is, ψ
σ(i)
E1

= (.6, .7, .8)

and ψE2 = (.4, .5, .6). Here, lψ = 3. Therefore, Manhattan distance between ψE1 and

ψE2 is given by

d(ψE1 , ψE2) =
1

lψ

lψ∑

i=1

∣∣∣ψσ(i)E1
− ψ

σ(i)
E2

∣∣∣ =
1

3
(|.6 − .4|+ |.7− .5|+ |.8− .6|) = .2. (2.4)

The above Example shows that the Manhattan distance of two HFEs is a crisp number.

This suggests the way of defuzzification to convert HFEs into a crisp number which helps

very much in deriving hesitant fuzzy VIKOR method.

From the literature review in Section 1, it can be easily observed that a very little

research has been done about hesitant fuzzy information till now. Since entropy measures

having wide application in areas like decision making (see Joshi and Kumar [14], Joshi

and Kumar [16], Joshi and Kumar [17], Joshi and Kumar [18], Joshi and Kumar [19],

Joshi and Kumar [20], Joshi and Kumar [21]), image processings (see Pal and King [35]),

pattern recognition (see Li and Cheng [27]) therefore, it is necessary to develop some

entropy measures under hesitant fuzzy environment. Now, we give axiomatic definition

of hesitant fuzzy entropy as follows:

Definition 4 (Hesitant Fuzzy Entropy (see Xu and Xia [48])). For an HFE ψE, a real

valued function Θ : ΨE → [0, 1] is called hesitant fuzzy entropy if it satisfies the following

properties

1. Θ(ψE) = 0 if and only if ψE = 0 or ψE = 1.
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2. Θ(ψE) = 1 if and only if ψEσ(i)+ψEσ(lψ−i+1)
= 1, for all i = 1, 2, . . . , lψ and lψ denotes

the length of ψE .

3. For some ψE , ψF ∈ ΨE, Θ(ψE) ≤ Θ(ψF ), if ψEσ(i) ≤ ψFσ(i) for ψEσ(i) + ψFσ(i) ≤ 1 or

ψEσ(i) ≥ ψFσ(i) for ψEσ(i) + ψFσ(lψ−i+1)
≥ 1 for all i = 1, 2, . . . , lψ.

4. Θ(ψE) = Θ(ψcE) where ψ
c
E denotes complement of ψE .

With these concepts in mind, in next Section, we introduce a new exponential hesitant

fuzzy entropy.

3. A New Exponential Hesitant Fuzzy Entropy

3.1. Justification

Before its introduction, we justify the need of exponential entropy based on HFSs.

The main benefit of using exponential function is its characteristic of possessing upper

and lower bounds. In case, the decision maker assigns a very small weight to an attribute,

that is, nearly equal to zero, then use of logarithmic entropy may give a very large

value. In particular, if a decision maker assigns the weight-age to an attribute in the

form of interval say [0, 1], then as x → 0, log(x) → ∞ and log(x) is not defined at

x = 0. Also, as x → 1, log(x) → 0 and at x = 1, log(x) = 0 where ‘x’ denotes

the probability of an event. In practice, the gain in information from an event, whether

highly probable or highly unlikely, is expected to lie between two finite limits. This limits

the scope of logarithmic entropy. Secondly, in Shannon entropy (see Shannon [42]), the

measure of ignorance or gain in information is taken as log
(

1
x

)
. But, statistically the

ignorance can be better represented by (1 − x) rather than 1
x
. If we define the gain in

information (∆̃I(x)) corresponding to an event with probability ‘x’ as ∆̃I(x) = log(1−x)
or ∆̃I(x) = − log(1 − x), then either ∆̃I < 0 or approaches to infinity with increase in

x which intuitively seems unappealing. The above problem can be circumvented by

using exponential function. Moreover, as mentioned earlier, HFSs express the real life

situations in a more general way than fuzzy sets, therefore, it becomes imperative to

develop such measures and methods which can help in decision making in the problems

involving exponential functions and HFSs. This study is a sequel in this direction.

3.2. Background

We start with probabilistic background. Let ∆m = {C = (c1, c2, . . . , cm) | ci ≥ 0,∑m
i=1 ci = 1}, m ≥ 2, be a set of complete probability distributions. For some C ∈ ∆m,

Pal and Pal [33] defined an exponential entropy given by

Hpp(C) =

m∑

i=1

ci(e
1−ci − 1), (3.1)

The authors claimed many advantages of exponential entropy particularly in image pro-

cessing. The concept of exponential entropy was generalized by Pal and Pal [33] to
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introduce a new entropy on fuzzy sets given by

H̃pp(C) =
1

n(
√
e− 1)

m∑

i=1

[µG(gi)e
(1−µG(gi)) + (1− µG(gi))e

µG(gi) − 1], (3.2)

where gi ∈ X. The measure (3.2) satisfies all the necessary requirements of fuzzy entropy

proposed by De Luca and Termini [9].

In this paper, we further extend this idea from fuzzy sets to HFSs.

3.3. Definition

For any HFE ψE , we define a hesitant fuzzy entropy Hpp(ψE) given by

Hpp(ψE) =
1

lψ(
√
e−1)

m∑

i=1

[(
ψEσ(i) + ψEσ(lψ−i+1)

2
e

2−ψEσ(i)
−ψEσ(lψ−i+1)

2

+
2− ψEσ(i) − ψEσ(lψ−i+1)

2
e

ψEσ(i)
+ψEσ(lψ−i+1)

2

)
− 1

]
, (3.3)

where lψ denotes the length of hesitant fuzzy element (HFE) ψE . Measure (3.3) satisfies

all the properties mentioned in Definition 4.

4. Application of Proposed Entropy in Multiple Attribute Decision Making

In next Subsection, we introduce a new MADM method using the concept of VIKOR

and based on proposed hesitant fuzzy entropy.

4.1. The proposed MADM method

In a MADM problem, sometimes the attributes are so complex and conflicting that

to select the best alternative is a difficult task. The decision makers find it hard to

express themselves as a single evaluation value. This may be due to lack of expertise

about problem domain, time pressure etc. Therefore, in such situations, decision makers

prefer to express themselves in the form of a set of values. Additionally, in some other

situation, there may be a group of decision makers with different backgrounds. Due

to this difference in backgrounds, it may not be possible to assign a consentaneous

membership degrees to all alternatives corresponding to all attributes. This may cause

a variation in evaluation of alternatives. Therefore, it is suitable to express the ratings

of alternatives corresponding to different attributes using HFSs. Now, we present the

VIKOR method to solve MADM problem with hesitant fuzzy information.

4.1.1. Determination of hesitant fuzzy decision matrix

Consider a MADM problem with Ω = (Ωi)i=1,2,...,m as a set of m-alternatives and

χ = (χj)j=1,2,...,n as a set of n-attributes. The HFS χj of ith alternative on χ is given

by χj = {〈Ωi, ψχj (Ωi)〉 | Ωi ∈ Ω}, where ψχj (Ωi) = {t | t ∈ ψχj(Ωi), 0 ≤ t ≤ 1} with
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i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Here, ψχj(Ωi) represents the set of possible values

of membership degrees of the alternative Ωi corresponding to attribute χj and will be

denoted by ψij in the rest of the paper. One important point that needs to be mentioned

here is that all HFEs in a column must be of same length. For example, let ψE1 and

ψE2 are two HFEs with respective lengths lψE1
and lψE2

. If lψE1
> lψE2

, then length of

ψE2 should be extended to length of ψE1 by adding the minimum value in it. In this

paper, we have extended the shorter length by adding .5, that is, it is assumed that all

the decision makers are compromise. For example, consider two HFEs ψE1 = (.3, .4) and

ψE2 = (.1, .4, .6, .3). Now, length of ψE1 is 2 and length of ψE2 is 4. Therefore, we extend

ψE1 as (.3, .4, .5, .5). Thus, the hesitant fuzzy decision matrix H is given by

H =

ψχ1 ψχ2 · · · ψχn





Ω1 ψ11 ψ12 · · · ψ1n

Ω2 ψ21 ψ22 · · · ψ2n
...

...
...

. . .
...

Ωm ψm1 ψm2 · · · ψmn

.

4.1.2. Determination of attributes weights

The attributes weights play an important role in the solution of a MADM problem.

Since, each factor affecting the MADM problem has a different meaning, therefore, all

the attributes cannot be assigned same weight. Realizing the importance of attributes

weights, Chen and Li [5] bifurcated the methods of determining attributes weights into

two catagories: Subjective methods and Objective methods. Subjective weights are ac-

cording to the decision makers’ preferences. AHP (Analytical Heirarchy Process) (see

Saaty [38]), Delphi method (see Hwang and Lin [13]) and Weighted Least Square method

(see Chu and Kalaba [6]) are the examples of subjective weights. Objective methods

determine the attributes weights by solving mathematical models. Multi objective pro-

gramming (see Choo and Wedely [7]), entropy method etc. belong to this category.

However, the attributes weights assigned by the decision maker, if available, are of ut-

most importance, but due to paucity of time, or limited expertise about problem domain

on the part of decision maker, or any other constraint, it is not always possible to have

such reliable attributes weights. In case, when it is not possible to obtain such reliable

subjective attributes weights, use of objective weights becomes useful. Therefore, deter-

mination of proper attributes weights is an important issue in the solution of MADM

problems. Now, we discuss two cases to determine attributes weights. First is the case

when attributes weights are completely unknown or incompletely known and second is

the case, when we have partial information about them.
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1. If Attributes Weights are Unknown:

If the information about attributes weights is incomplete or completely unknown,

then attributes weights uj can be calculated as follows (see Chen and Li [5]):

uj =
1− Ẽj

n−∑n
j=1 Ẽj

, j = 1, 2, . . . , n, (4.1)

where Ẽj =
1
lψ

∑lψ
i=1H

pp(ψij), j = 1, 2, . . . , n and lψ denotes the length of ψE .

According to entropy theory, smaller value of entropy across alternatives provides

decision makers a useful information. Therefore, criterion should be assigned a bigger

weight; otherwise such a criterion will not be given due importance by most of the

decision makers. In other words, such a criterion should be evaluated as a very small

weight.

2. If Attributes Weights are Partially Known:

Sometimes, in real life, it is not possible for the decision makers to assign attributes

weights as precised value. This may be due to lack of knowledge about problem domain,

time pressure or lack of expertise on the part of decision makers. In such situations,

decision makers prefer to express themselves in the form of intervals. Let the set of

information provided by experts about attributes weights be denoted by Ĥ. To compute

the attributes weights in such a case, we use the method suggested by Wang and Wang

[46] as follows:

The overall entropy E of an alternative Ωi is given by

E(Ωi) =
n∑

j=1

Hpp(ψij). (4.2)

Due to increasing complexities of real world problems, the decision makers may not be

in position to provide exact attributes weights. Instead, they may possess only partial

information about attributes weights (see Kim et al. [24]). To compute the attributes

weights, we construct the following programming model:

minE =

lψ∑

i=1

ujE(Ωi) =

lψ∑

i=1

uj

( n∑

j=1

Hpp(ψij)
)

=

n∑

j=1

1√
e− 1

lψ∑

i=1

1

lψ

[(
ψEσ(i) + ψEσ(lψ−i+1)

2
e

2−ψEσ(i)
−ψEσ(lψ−i+1)

2

+
2− ψEσ(i) − ψEσ(lψ−i+1)

2
e

ψEσ(i)
+ψEσ(lψ−i+1)

2

)
− 1

]
, (4.3)

where u = (u1, u2, . . . , un) is attributes weight vector such that
∑n

j=1 uj = 1. Hence, by

solving (4.3), the optimal solution u = argminE is choosen as optimal attribute weights.
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4.1.3. Determination of Ideal Solutions

Since the core idea of VIKOR method is based on the distance measures of alterna-

tives from ideal solutions, therefore, determination of ideal solutions is necessary to rank

the alternatives. For this, consider a HFE ψE = (µ1, µ2, . . . , µt) where µk (1 ≤ k ≤ t)

represents the membership degrees assigned by decision makers to alternative Ωi corre-

sponding to attribute Λj. We define positive ideal solution ψE∗ as follows:

1. For benifit criteria

ψE∗ = sup
1≤k≤t

(µk) = (1, 1, . . . , 1︸ ︷︷ ︸
t times

). (4.4)

2. For cost criteria

ψE∗ = inf
1≤k≤t

(µk) = (0, 0, . . . , 0︸ ︷︷ ︸
t times

). (4.5)

Similarly, we may define negative ideal solution ψE∗
given by

1. For benifit criteria

ψE∗
= inf

1≤k≤t
(µk) = (0, 0, . . . , 0︸ ︷︷ ︸

t times

). (4.6)

2. For cost criteria

ψE∗
= sup

1≤k≤t
(µk) = (1, 1, . . . , 1︸ ︷︷ ︸

t times

). (4.7)

4.1.4. Compromise Solution

The VIKOR method (see Opricovic [29]) is based on the measure of closeness to

the ideal solution. It is an efficient tool which provides the compromise solution from

a set of conflicting criteria. The basic measure of compromise solution has originated

from Lp-metric (see Yu [49]). For an MADM problem given in Subsection 4.1.1, Yu [49]

proposed a compromise programming given by:

Lp,i =

[
n∑

j=1

(
uj
ψE∗ − ψij

ψE∗ − ψE∗

)p] 1
p

, 1 ≤ p ≤ ∞, i = 1, 2, . . . ,m. (4.8)

where ψE∗ and ψE∗
as defined in Subsection 4.1.3 respectively denote the positive and

negative ideal solutions and uj (j = 1, 2, . . . , n) represent the corresponding weight of

jth criteria.

Since it is not possible to satisfy all the criterion simultaneously, therefore, ideal

solutions are infeasible in majority of the cases. Therefore, we try to find out a solution

which is close to ideal solution, that is, compromise solution. VIKOR method provides
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compromise solution by integrating maximum group utility (L1,i) and minimum individ-

ual regret (L∞,i). But, practically it is difficult to compute (L1,i) and (L∞,i). Therefore,

we use Manhattan distance to rewrite (4.8) as follows:

L̂p,i =

[
n∑

j=1

(
uj
d(ψE∗ , ψij)

d(ψE∗ , ψE∗
)

)p] 1
p

, 1 ≤ p ≤ ∞, i = 1, 2, . . . ,m. (4.9)

where uj (j = 1, 2, . . . , n) denotes the weight of jth criteria satisfying 0 ≤ uj ≤ 1 and∑n
j=1 uj = 1. d(ψE∗ , ψij) and d(ψE∗ , ψE∗

) can be computed by using Manhattan distance

given by Definition 3 Till now, we have defined the Manhattan Lp-metric for benifit type

criteria. Similarly, it may be defined for cost criteria. Based on (4.9), we define hesitant

fuzzy group utility (Ŝi) and hesitant fuzzy individual regret (R̂i) for benifit type criterian

as follows:

Ŝi = L̂1,i =

n∑

j=1

uj
d(ψE∗ , ψij)

d(ψE∗ , ψE∗
)

(4.10)

and

R̂i = L̂∞,i = max
j

(
uj
d(ψE∗ , ψij)

d(ψE∗ , ψE∗
)

)
(4.11)

where uj (j = 1, 2, . . . , n) denotes the weight of jth criteria satisfying 0 ≤ uj ≤ 1 and∑n
j=1 uj = 1. Distances d(ψE∗ , ψij), d(ψE∗ , ψE∗

) can be computed by using Definition 3.

The hesitant fuzzy compromise measure (Q̂i) corresponding to (4.9) is defined by:

Q̂i = µ
Ŝi − Ŝ∗

Ŝ∗ − Ŝ∗
+ (1− µ)

R̂i − R̂∗

R̂∗ − R̂∗

(4.12)

where Ŝ∗ = maxi Ŝi, Ŝ∗ = mini Ŝi, R̂
∗ = maxi R̂i, R̂∗ = mini R̂i and µ denotes the weight

of the strategy of the majority of criteria or maximum overall utility. From (4.12), it

is clear that hesitant fuzzy compromise solution combines maximum group utility and

minimum individual regret.

4.1.5. Procedural steps of proposed MADM method

1. Construct the hesitant fuzzy decision matrix. The entries in matrix are the assess-

ments of decision makers of different alternatives for different criterion. The weight

uj of j
th criteria is also decided by the decision makers.

2. Compute positive ideal solution (ψE∗) and negative ideal solution (ψE∗
) for benifit

criterion as well as cost criterion using (4.4) to (4.7).

3. Determine the weights of the criterion involved by using (4.1) and (4.3).

4. Compute the values of maximum group utility (Ŝi), minimum individual regret (R̂i)

and compromise solution (Q̂i) by using (4.10), (4.11) and (4.12), respectively.
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5. Rank the alternatives according to the values of Ŝi, R̂i and Q̂i (i = 1, 2, . . . ,m). The
most suitable solution must satisfy the following two conditions:

C1 (Acceptable Advantage): If Q̂(Ω2) − Q̂(Ω1) ≥ 1

j − 1
where Ω1 and Ω2 are the

alternatives standing at first and second positions, respectively.

C2 (Acceptable Stability): Alternative Ω1 should also be ranked at first position by
Ŝi and R̂i.

The compromise solution is stable within a decision making process, which could be:
“voting by majority rule” (when µ > 0.5 is needed) or “by consensus” µ ≈ 0.5 , or “with
veto” (µ < 0.5) . Here, µ is the weight of decision making strategy “the majority of
criteria” (or “maximum group utility”).

If these two conditions are not satisfied simultaneously, then we seek for compromise
solution as follows:

(a) If condition C1 is not satisfied, the find the maximum value of N for which

Q̂(ΩN )− Q̂(Ω1) <
1

j − 1
; (4.13)

then Ωi (i = 1, 2, . . . , N) are the compromise solutions.

(b) If the condition C2 is not satisfied, the Ω1 and Ω2 are the compromise solutions.

To understand the above procedure more clearly, we summarize it through flow chart
as follows:

Figure 1: Graphical Abstract of Proposed MCDM Method.

In next Section, we consider a numerical Example to explain the above method.
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5. Numerical Examples

5.1. When attributes weights are unknown

Consider a construction company ABC Ltd. who wants some potential suppliers

to procure the raw material required for construction. Bids are invited for the purpose

and company has received 4 tenders say Ω1,Ω2,Ω3,Ω4. Now, the company wants to

enlist the four suppliers as a sequence of preferences. Four criterion namely (1). Quality

(Λ1), (2). Proximity to site (Λ2), (3). Responsiveness (Λ3), (4). Cost (Λ4) are fixed to

select the most appropriate supplier. To ensure a fair selection of the supplier, company

has decided to hire the services of experts with different backgrounds and expertise.

Depending upon their expertise and background, the membership degrees assigned by

experts are compiled in Table 1. For example, to compute the degrees that the alternative

Ωi satisfies Λj, some decision makers assign .6, some assign .7 and some others assign

.9, and these three groups cannot persuade each other, therefore, the dgerees that the

alternative Ωi satisfies Λj should be considered as HFE {.6, .7, .9}.

Table 1: Responses of Decision Makers.

Λ1 Λ2 Λ3 Λ4

Ω1 (.6, .7, .9) (.6, .8) (.3, .6, .9) (.4, .5, .9)

Ω2 (.7, .8, .9) (.5, .8, .9) (.4, .8) (.5, .6, .7)

Ω3 (.5, .6, .8) (.6, .7, .9) (.3, .5, .7) (.5, .7)

Ω4 (.6, .9) (.7, .9) (.2, .4, .7) (.4, .5)

Since all the HFEs in Table 1 are not of same length, therefore, we extend the lengths of

shorter HFEs by adding .5 in it so that all HFEs in each column have the same length and

arrange them in ascending order. Thus, the hesitant fuzzy decision matrix so obtained

is shown in Table 2.

Table 2: Hesitant Fuzzy Decision Matrix.

Λ1 Λ2 Λ3 Λ4

Ω1 (.6, .7, .9) (.5, .6, .8) (.3, .6, .9) (.4, .5, .9)

Ω2 (.7, .8, .9) (.5, .8, .9) (.4, .5, .8) (.5, .6, .7)

Ω3 (.5, .6, .8) (.6, .7, .9) (.3, .5, .7) (.5, .5, .7)

Ω4 (.5, .6, .9) (.5, .7, .9) (.2, .4, .7) (.4, .5, .5)

Now, we compute the attributes weights. To assign the weight-age to different attributes,

it is necessary to compute the information obtained from each attribute across all the

alternatives. The more will be the information obtained from an attribute, the more

will be weight-age assigned to it in decision making. For this, we compute information

matrix using (3.3) given by Table 3.
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Table 3: Hesitant Fuzzy Information Matrix.

Λ1 Λ2 Λ3 Λ4

Ω1 .7880 .9298 .9618 .9426

Ω2 .6509 .7812 .9745 .9618

Ω3 .9298 .7880 1 .9745

Ω4 .8848 .8463 .9809 .9936

Ẽj 3.2535 3.3453 3.9173 3.8725

The computed values of attributes weights using (4.1), when they are unknown to us are

given by

u1 = .2169, u2 = .2258, u2 = .2808, u4 = .2765. (5.1)

Since, the traditional VIKOR method is based on the particular distance measure of

closeness to the ideal solutions, in order to apply the HF-VIKOR method, we need to

find out the ideal solutions. The computed values of ψE∗ and ψE∗
using (4.4) to (4.7)

are shown in Table 4.

Table 4: Computed Values of ψE∗ and ψE∗
.

Λ1 Λ2 Λ3 Λ4

ψE∗

j
(1, 1, 1) (1, 1, 1) (1, 1, 1) (0, 0, 0)

ψEj∗
(0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 1)

Now, we compute the values of Ŝi, R̂i and Q̂i using (4.10), (4.11) and (4.12). Here, Ŝi
denotes the hesitant fuzzy group utility as it fuses the normalized distances between ideal

and actual evaluations determined by decision makers corresponding to each attribute.

R̂i denotes the hesitant fuzzy individual regret by using the weighted Manhattan dis-

tances between ideal and actual evaluation values determined by decision makers. The

hesitant fuzzy compromise measure Q̂i is the summation of the normalized hesitant fuzzy

group utility values and the normalized hesitant fuzzy individual regret values. The com-

puted values of Ŝi, R̂i and Q̂i are given in Table 5. The ranking of alternatives Ω1, Ω2,

Ω3 and Ω4 is given in Table 6.

Table 5. Computed Values of Ŝi, R̂i and Q̂i. Table 6. Ranks of Alternatives.

Ω1 Ω2 Ω3 Ω4 Ω1 Ω2 Ω3 Ω4

Ŝi .4189 .3912 .4368 .4282 Ŝi II I IV III

R̂i .1659 .1659 .1567 .1591 R̂i II II I IV

Q̂i .8037 .5000 .5000 .5361 Q̂i III I I II
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Thus, the preferential sequences of alternatives are given by

By Q̂i, Ω2 = Ω3 ≻ Ω4 ≻ Ω1;

By R̂i, Ω3 ≻ Ω2 = Ω1 ≻ Ω4; (5.2)

By Ŝi, Ω2 ≻ Ω1 ≻ Ω4 ≻ Ω3.

Now,

Q̂(Ω2)− Q̂(Ω3) = 0 <
1

4− 1
= .333, (5.3)

therefore, condition C1 is not satisfied. Also, Q̂(Ω4) − Q̂(Ω2) = .0361 < 1
4−1 = .333,

by applying condition C1, we have Ω1,Ω2,Ω3 as the compromise solution. Again, Ω2 is

not ranked best by R̂i, therefore, condition C2 ia also not satisfied. Thus, Ω2,Ω3 is the

compromise solution.

A Comparative Analysis: To check the effectiveness of the proposed method, same

example was computed by using VIKOR method for HFSs introduced by Liao and Xu

[25]. As a result, we obtain Ω2 as the best alternative. Therefore, it is quite natural

to ask: which output is more reliable? It is a fact that each algorithm is defined with

a different viewpoint. As discussed earlier, the attributes weights play a decisive role

in the solution of a MADM problem. Due to the difference in viewpoints, the authors

may assign different weight-age to different attributes. In VIKOR method suggested

by Liao and Xu [25], the weights assigned to attributes are subjective weights whereas

in the proposed method, we use objective attributes weights. Subjective weights are

assigned according to preference decision makers. In practice, due to limited expertise

about problem domain or shortage of time etc. that decision makers may not provide the

justified attributes weights. When it becomes difficult to obtain such reliable attributes

weights, the use of objective method becomes helpful. Thus, the output of proposed

method is more reliable.

5.2. When attributes weights are partially known

Due to time constraints, lack of knowledge about problem domain etc., it may not

be possible every time for decision makers to provide the attributes weights as fixed

real numbers. In such cases, decision makers prefer to express themselves in the form

of intervals. In view of this, we solve above Example for the case when we have par-

tial information about attributes weights. Let the partial information available about

attributes weights is denoted by Ĥ given by

Ĥ = {0 ≤ u1 ≤ .25, 1 ≤ u2 ≤ .15, .25 ≤ u3 ≤ .35, .2 ≤ u4 ≤ .45}. (5.4)

The computed hesitant fuzzy information matrix from the hesitant fuzzy decision matrix

given by Table 2 is shown in Table 3. To determine the attributes weights, we construct

the following programming model by using (4.3):

minE = 3.2535u1 + 3.3453u2 + 3.9173u3 + 3.8725u4
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subject to





0 ≤ u1 ≤ .25,

1 ≤ u2 ≤ .15,

.25 ≤ u3 ≤ .35,

.2 ≤ u4 ≤ .45

u1 + u2 + u3 + u4 = 1.

(5.5)

Computing (5.5) using MATLAB software, the attributes weight vector so obtained is

given by

U = (.25, .15, .25, .35)T . (5.6)

Now, we determine the values of Ŝi, R̂i and Q̂i using (4.10), (4.11) and (4.12). The

computed values of Ŝi, R̂i and Q̂i are shown in Table 7 and ranks of alternatives are

given in Table 8.

Table 7. Computed Values of Ŝi, R̂i and Q̂i. Table 8. Ranks of Alternatives.

Ω1 Ω2 Ω3 Ω4 Ω1 Ω2 Ω3 Ω4

Ŝi .4317 .4083 .4550 .4333 Ŝi II I IV III

R̂i .2100 .2100 .1983 .1633 R̂i III III II I

Q̂i .7505 .5000 .8747 .2677 Q̂i III II IV I

The ranks of alternatives Ωi’s are as follows:

By Ŝi, Ω2 ≻ Ω1 ≻ Ω4 ≻ Ω3.

By R̂i, Ω4 ≻ Ω3 ≻ Ω2 = Ω1; (5.7)

By Q̂i, Ω4 ≻ Ω2 ≻ Ω1 ≻ Ω3;

Thus from (5.7), it is clear that Ω4 and Ω2 stands at first and second place in the list

of Q̂i and Q̂(Ω2) − Q̂(Ω4) = .2323 < 1
4−1 = .3333. This shows that condition C1 is not

satisfied. Also, for no other value of Q̂i except Ω2 and Ω4, (4.13) holds. This implies

that Ω4,Ω2 is the compromise solution. Again, Ω4 which is ranked first by Q̂i is not the

best alternative in the list of Ŝi. Therefore, condition C2 is also not satisfied. Thus, we

have Ω4,Ω2 as compromise solution.

6 Conclusions

Hesitant fuzzy sets proposed by Torra [44] and Torra and Narukawa [43] have been

proved to be more practical to depict the practical situation. In this communication, we

have successfully introduced an exponential hesitant fuzzy entropy based on the HFSs and

exponential entropy studied by Pal and Pal [33]. Attributes weights play an important

role in the solution of MADM problem. Two methods of finding attributes weights are

discussed. First method deals with the case of completely unknown attributes weights

and second method describes the case of partially known attributes weights. The main
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limitation of this study is that it is based on complete probability distribution, that is,

for a probability distribution (c1, c2, . . . , cn) for which
∑n

i=1 ci = 1 holds which may not

always be the case, for example, D-numbers proposed by Deng [10] for which
∑n

i=1 ci ≤ 1

. Another limitation of the proposed study lies with type of data used. The proposed

work is based on HFSs where decision makers are expected to express their viewpoints

as precise numbers. In practical, due to limited expertise about problem domain or due

to shortage of time etc. that decision makers prefer to express themselves in the form of

intervals instead of precise numbers. To cover up all such cases, the proposed measure as

well as method may further be extended to include more general cases like interval-valued

HFSs. The more general work is under consideration and will be reported somewhere

else.
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