
International Journal of Information and Management Sciences

30 (2019), 143-167. DOI:10.6186/IJIMS.201906 30(2).0004

Solving Multi-Mode Resource-Constrained
Multi-Project Scheduling Problem

with Combinatorial Auction Mechanisms

Chi-Bin Cheng, Chiao-Yu Lo and Chih-Ping Chu

Tamkang University

Abstract

This study solves a multi-project, multi-mode, and resource-constrained project schedul-

ing problem. Multi-mode means that the activities in a project can be accomplished in one

out of several execution modes, each of which represents an alternative combination of re-

source requirement of the activity. The present study considers the case that the resources

need to be allocated first to individual projects by the upper-level manager, and then the

project manager of each project schedules the project to optimize its outcome. In view of

such a hierarchical decision-making structure, this study uses bi-level decentralized program-

ming to model the problem. The proposed solution procedure employs combinatorial auction

mechanisms to determine resource allocations to projects. A regular combinatorial auction

and a fuzzy combinatorial auction are used, respectively, for cases of hard and soft capacity

constraints. The proposed solution procedure is evaluated by comparison with the results

reported in the literature.

Keywords: Multi-project scheduling, resource dedication, bi-level decentralized program-

ming, combinatorial optimization, fuzzy logic.

1. Introduction

As market competiveness becomes even more furious, the necessity for firms to si-

multaneously conduct multiple projects under scarce resources is more and more critical

(see Can and Ulusoy [14]). A report by Economist Intelligence Unit showed that 80hav-

ing project management as a core competency helped them remain competitive during

recession (see Economist Intelligence Unit [21]). In particular, parallel to the global

expansion of the IT sector and the growth of R& D and engineering service activities,

project management is increasingly used as a management paradigm (see Can and Ulusoy

[14]).

Resource allocation among projects is one of the most important issues in the multi-

project management setting. In the literature, approaches to solving the multi-project

scheduling problem generally assume a resource-sharing policy among all projects to form
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a shared pool of each resource, with the exception of the research by Besikei et al. [11],

which will be discussed later in the literature review. The assumption of resource sharing

cannot be applied to all multi-project environments due to various reasons (see Beşikci

et al. [12]) as follows.

(1) Geographical limitations, e.g., projects are distributed across the world.

(2) Project characteristics may not allow resource sharing; e.g., the development process

is highly technology-intensive.

(3) Resource characteristics may not allow resource sharing; e.g., it is not desirable to

allocate software developers to different projects for learning curve concern.

(4) Resource sharing is too costly; e.g., moving heavy machinery equipment is uneco-

nomic. A typical scenario is the tower crane used at a construction site; it is not

economic to move and set up the crane between two different sites, and thus, the

crane can be used for other projects only after the current project completes the use

of the crane.

When resource sharing is allowed, the multi-project scheduling problem can be rep-

resented by a single project network formed by combining the networks of all individual

projects, and available single-project solution methods can be employed to solve the

problem. However, when the assumption of resource sharing is not applicable, the dedi-

cation of resources to individual projects is required to optimize the overall multi-project

scheduling performance.

Project management includes activities ranging from the tactical level, such as de-

termination of due dates and resource allocation, to the operational level, such as the

scheduling of specific activities (see Speranza and Vercellis [51]). Such a decision-making

process in the multi-project environment is often considered having a dual-level man-

agement structure (see Yang and Sum [63]), which contains an upper-level manager and

a team of lower-level project managers. The upper-level manager is responsible for the

management of all projects, while the project managers are responsible for scheduling

the activities of individual projects. It is further noted that this decision-making process

also involves sequential and interactive decisions. For example, individual project man-

agers attempt to optimize the outcomes of their projects after the upper-level manger

determine the resources allocated to each project; on the other hand, the expected out-

come of each project would motivate the upper-level manager to reconsider his previous

decision and make necessary changes. The present study uses bi-level decentralized

programming to model the dual-level structure, as well as the sequential and interac-

tive decision-making process of the problem. Bi-level programming is closely related to

leader-follower (Stackelberg) games in economics. It describes the hierarchical decision

structure in many real-world situations, such as strategic planning (see Bracken and

McGill [14]), resource allocation (see Aiyoshi and Shimizu [4]), and water management

(see Anandalingam and Apprey [6]). Bi-level programming is categorized as non-convex

programming and proven to be NP-hard by Ben-Ayed and Blair [10]. Bi-level problems

share the following features (see Shih et al. [48] and Wen and Hsu [60]): (1) interactive
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decision-making units exist within a predominantly hierarchical structure; (2) execution

of decisions is sequential, from the top to a lower level; (3) each decision unit indepen-

dently optimizes its own benefits, but is affected by the actions of other units; and (4)

the external effect on a decision maker’s problem can be reflected in both the objective

function and the set of constraints.

This study also considers that activities in a project can be executed by alternative

modes which are pre-determined recipes of resource usages with their corresponding

activity durations. The scenario of the executable modes can be illustrated by a software

development project which involves three types of manpower, designers, developers, and

testers. A software module can be completed with different combinations of the three

types of skilled staff, and each combination is referred to as a mode. Apparently, different

combinations of these resources lead to different completion times, and the resource mode

chosen for a certain software module would constraint the mode choice by other software

modules.

Each execution mode represents a combination of resource requirements of the activ-

ity. The excess or the deficit of a constituent resource in an execution mode is undesirable;

the excess denotes a resource waste, while the deficit of a certain resource in the mode

fails to carry out the activity. Such a characteristic of multi-mode project scheduling

coincides with the concept of combinatorial auction (CA), where bidders are allowed to

submit bids on combinations of items. CA was proposed as early as 1976 (see Jackson

[27]) for radio spectrum rights, and later Rassenti et al. [43] proposed such auctions to

allocate airport time slots (see de Vries and Vohra [20]). With the combinational bids,

CA enables bidders to express complementarities between items, and thus, the bidder

does not have to speculate on an item’s valuation under the risk of not getting other

complementary items (see Sandholm [46]).

The bi-level decentralized formulation proposed by this study facilitates the use of

CA in solving the problem. Each project manager bids for the desirable resource modes

that are potentially to improve the outcome of the project, while the upper-level manager

acts as the auctioneer to determine which resource combinations are granted to which

project under the overall resource capacity constraint. An algorithm is formulated in

this study to execute the CA mechanism iteratively to gradually improve the solution.

In this algorithm, a bid generation procedure that only finds and retains most beneficial

bids constrains the number of bids involved in the CA mechanism and hence alleviates

the computational complexity of the CA problem. In particular, each bidder (i.e. project

manager) also explores solutions that are slightly inferior to the optimum of his project

outcome to increase the chance of winning the auction, and the auctioneer (i.e. upper-

level manager) will also slack off the project completion time demands a little if the

auction fails in the previous round. This solution strategy renders a chance for the auc-

tioneer not only to find solutions that satisfy the capacity constraints but also obtain an

acceptable overall performance. This study further suggests a fuzzy resource constraint

in case failing to find a feasible project schedule in reasonable time. The introduction

of fuzzy capacity enable the evaluation of the tradeoff between the completion time and

the capacity expansion.
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From the above discussion, the problem concerned in this study is a multi-mode

resource-constrained multi-project scheduling problem (MRCMPSP) without resource

sharing. Other characteristics of the multi-project environment considered in this study

are as follows. All projects are assumed to start initially, and preemption of activity is

not allowed. Following Slowinski [49], three types of resources are considered, namely,

renewable, non-renewable, and doubly constrained. Renewable resources are available

in limited quantities during each time period. A typical example of such a resource is

skilled labor, where the labor hours available to work on the project each day is limited

but the resource is renewed each day to a predetermined level. Non-renewable resources

are limited for the entire project; money is the best example of such a resource. Doubly

constrained resources are limited both periodically and for the entire project. This type

of resources is not explicitly considered in our model, since it can be incorporated by

treating it as a renewable as well as a non-renewable resource.

The remainder of this paper is organized as follows. Section 2 provides a literature

review on the field of project scheduling. Presented in Section 3 is the MRCMPSP

modeled as a bi-level decentralized programming problem. Section 4 presents the solution

procedure which is formulated according to a regular auction mechanism and a fuzzy

combinatorial auction mechanism. Computational comparison is carried out in Section

5 based on the problem instances provided by Besikei et al. [11]. Finally, conclusions are

given in Section 6.

2. Literature Review

The MRCMPSP contains a set of single-project multi-mode resource-constrained

project scheduling problems (MRCPSP) as its sub-problems. It is convenient to start

the discussion with the MRCPSP.

2.1. Single-project MRCPSP

The MRCPSP is a NP-hard problem, and when there are at least two renewable

resources, the problem of finding a feasible solution is already NP-complete (see Kolisch

and Drexl [29]). Exact approaches to solving MRCPSP were first proposed by Talbot

[54], followed by Sprecher et al. [53], Hartmann and Drexl [26], and Sprecher and Drexl

[52]. Heuristic methods have been proposed to find near-optimum solutions in reducing

computation time, such as Slowinski et al. [50]. Meta-heuristics, especially genetic

algorithms, were widely used to solve the problem (see Mori and Tseng [39] and Alcaraz

et al. [5]). Table 1 provides a classification and summary of literature for solving the

multi-mode single project scheduling problem, in which the methods classified into exact

method, heuristics, and meta-heuristics.

The MRCPSP model embedded in the MRCMPSP of this study is formulated ac-

cording to Talbot [54]. Talbot [54] formulated MRCPSP as an integer programming

problem with two alternative objectives; one is to minimize the project completion time,

and another one emphasizes a monetary objective that minimize the usage of resources

under an arbitrary long due date.
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Table 1: Literature for solving single project with multiple modes (MRCPSP).

Approach type Algorithms Literature

Exact method

Two-stage solution Talbot [54]

Branch-and-bound
Sprecher et al. [53]

Sprecher and Drexl [52]

Hartmann and Drexl [26]

Meta-heuristics

Genetic algorithms
Mori and Tseng [39], Hartmann [25], Alcaraz
et al. [5], Barrios et al [8], Bagherinejad and
Majd [7]

Hybrid GA
Lova et al. [36], Elloumi and Fortemps [22],
Van Peteghem and Vanhoucke [57], Vartouni
and Khanli [58]

Particle swarm optimization Chen and Sandnes [16]

Heuristics
Decision support system Slowinski et al. [50]

Empirical hardiness model Messelis and Causmaecker [38]

2.2. Multi-project scheduling

One of the earliest studies on multi-project scheduling problems is the integer pro-

gramming formulation by Pritsker et al. [42], in which important aspects of multi-project

scheduling have been covered, such as renewable resource constraints and multiple modes

of resource usages. Kurtulus and Narula [32] examined the tardiness cost performance of

10 scheduling rules for a multi-project scheduling problem. Multiple modes of resource

usage were not considered in their study. Rule-based scheduling approaches were also

proposed by Tsubakitani and Decro [55] and Lawrence and Morton [34].

Lova et al. [35] developed a two-phase multi-criteria heuristic to improve resource al-

location in multi-project scheduling. In the first phase, it obtains a feasible schedule with

a time criterion, minimizing the mean project delay or the multi-project duration. In the

second phase, it improves the first-phase schedule with non-time criteria, such as project

splitting, in-process inventory, resource leveling, or idle resources. Meta-heuristics such

as genetic algorithm were also employed to solve the multi-project scheduling problems

in some studies, e.g., Kim et al. [28], Goncalves et al. [24], and Lova et al. [36].

Dual-level management structure is a popular concept in multi-project scheduling lit-

erature; such a structure also facilitates the decomposition of the original problem. Yang

and Sum [63] presented the dual-level project management where the project managers

at the operational (lower) level are in charge of scheduling and controlling individual

project activities, while the upper-level manager works on a more tactical level and is

responsible for all projects. The upper-level manager schedules all projects as individual

entities to generate the start times and due dates for each project. According to these

start times and due dates, each project manager schedules his project activities accord-

ing to the resource capacity imposed by the upper-level manager. Sperenza and Vercellis

[51] also proposed a two-stage approach to multi-project scheduling which decomposes
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the problem into a hierarchy of integer programming models to reflect the dual-level

project management structure. Yang and Sum [64] followed their prior work Yang and

Sum [63] and examined the performance of due date, resource allocation, project re-

lease, and activity scheduling rules in a multi-project environment. Can and Ulusoy

[15] have recently developed a two-stage decomposition approach from the concepts of

macro-activity and macro-mode introduced by Sperenza and Vercellis [51] to solve the

dual-level multi-project scheduling problem. In the first stage, each project is reduced

to a macro-activity with macro-modes and the multi-project scheduling is solved as a

single project problem. In the second stage, individual project is scheduled to minimize

its makespan using the start time and resource profile obtained in the first stage. Ta-

ble 2 classifies and summarizes the literature for solving the multiple project scheduling

problems with respect to single/multiple modes, methods used, and resource sharing.

Table 2: Literature for solving multi-project scheduling problems.

Mode Approach Type Literature Resource sharing

Single mode

Exact method Speranza and Vercellis [51] Yes

Meta-heuristics
Kim et al. [28] Yes

Pérez et al. [41] Yes

Heuristics

Tsubakitani and Decro [55], Lawrence and
Morton [34], Yang and Sum [62][63]

Yes

Lova et al. [35] Yes

Chien et al. [19] Yes

Zheng et al. [64] Yes/No*

Wauters et al. [59] Yes/No*

Multi-mode

Exact method Pritsker et al. [42] Yes

Meta-heuristics

Goncalves et al. [24] Yes

Lova et al. [36] Yes

Besikei et al. [11][13] No

Can and Ulusoy [15] Yes

Heuristics Kurtulus and Narula [32], Tseng [56] Yes

*: Containing both sharable and non-sharable resources.

The literature discussed above generally assumed that resources are shared among

projects. However, this assumption can be invalid when resource sharing is not allowed

or preferred (see Besikei et al. [11, 13]). Zheng et al. [65] and Wauters et al. [60] con-

sidered both sharable and non-sharable resources, where global resources can be shared

among projects while local resources can be used by individual projects only. Besikei et

al. [11, 13] particularly considered the case of unshared resources in the multi-project

environment as a resource dedication problem. Resources are first dedicated to individ-

ual projects. Once resources are dedicated, they are no longer allowed to be shared with

other projects; the multi-project problem then becomes solving separately many MR-

CPSPs with their dedicated resources. A genetic algorithm with a local improvement
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heuristic (referred to as a combinatorial auction by the authors) is developed to solve

the problem. In the combinatorial auction heuristic of Besikei et al. [11], the preferences

of projects for resources are calculated with a modified Lagrangian relaxation formu-

lation of the single project scheduling problem. After a short episode of sub-gradient

optimization, values of the Lagrangian coefficients are taken as the bids of projects for

resources. The unused resources in the current solution are then distributed to projects

according to these bids by means of a continuous knapsack model to achieve a more

preferable resource dedication state, and then a new schedule for each project is calcu-

lated. The overall combinatorial search is carried out by the genetic algorithm, in which

the above-mentioned bidding heuristic is used as a local improvement procedure.

Inspired by Besikei et al. [11], the present study also focuses on the case of non-

shareable resources in a multi-project environment. This study proposes a novel formu-

lation of the problem as a bi-level decentralized programming (BLDP), which facilitate

the interactions between the higher manager and the project managers. We propose an

interactive algorithm based on the concept of combinatorial auction to solve the prob-

lem. Unlike previous approaches using either exact methods or (meta-)heuristics to solve

the problem, our algorithm integrates both exact methods and heuristics in the solution

procedure. Moreover, we incorporate fuzzy constraints in our model to ease the capacity

constraints and explore potential solutions to the problem.

3. Modeling of MRCMPSP

This study considers a MRCMPSP where resource sharing among projects is not

allowed. The concept of dual-level management structure is also adopted in this study.

The upper-level manager determines the assignments of resources and the due dates to

all projects; project managers at the lower level in turn strive to optimize their project

outcomes with the resources under due dates assigned by the upper-level manager. Such

a decision-making process is not one-way but rather interactive. In other words, the

expected outcome of each project would make the upper-level manager reconsider his

earlier decision and come up with alternatives if necessary. This interactive decision-

making process continues until a satisfactory solution is obtained and is characterized as

a bi-level decentralized programming problem (BLDP) in this study.

The BLDP belongs to the domain of distributed decision making problem, which

addresses an important and rapidly developing field in decision science and comprises

many diverse areas and disciplines. Schneeweiss [47] presented a unified framework to

identify the overlap among different areas so as to take advantage of synergies, and to

discover and understand general principles of distributed decision making. Schneeweiss

[47] classified the domain of distributed decision making with respect to weak/strong hi-

erarchical characters and single/multiple decision-maker situations, and introduced the

basic concepts and theories as well as general applications including production plan-

ning/design/implementation, supply chain management, service operations and costs,

and leadership problems. In particular, Adhau et al. [2, 3] and Adhau and Mittal [1]

proposed distributed multi-agent systems with auctions based negotiation to resolve the
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conflict and allocation of shared resources among multiple competing projects; however,

their approaches considered only single mode resource usage.

The upper-level decision in our BLDP is a resource allocation problem, where the

manager assigns the amounts of resources to individual projects under the constraints of

resource capacities. Each lower-level project manager then schedules the activities and

the usages of resources, attempting to optimize the outcome of the project. Minimization

of the weighted total tardiness of all projects is one of the most adopted objectives both

in the literature and in actual practice (see Besikei et al. [11, 13]), and is used as the

objective of the upper-level manager in the proposed BLDP model. Resource allocation

and due date assignment to individual projects are decisions of the upper-level manager.

These two decisions are in fact interdependent, i.e., the completion time of a project

may be improved if more resources are allocated to the project. Resource allocation

decision is much more complicated than the due date decision since it generally involves

the combinations of many different resources. The present study proposes treating due

date assignment as the decision at the upper level and leaving resource demand as the

objective of individual projects. In other words, each project manager minimizes the

resource usage under the due date request of the upper-level manager, and uses the

resulting solution as a suggestion to the upper-level manager for evaluation. This study

formulates the lower-level problem based on the MRCPSP formulation by Talbot [54]

with a monetary objective. The monetary objective can avoid solutions with extra

resources when searching feasible solution with the due-date given by the upper-level,

and as such, all the monetary conversion factors are set to 1.

The proposed BLDP model for MRCMPSP is presented as follows.

Upper-level decision variables

δp : due date assigned to project p.

Upper-level parameters

V : Total number of projects.

Dp : due date for project p.

νp : weight of project p.

Yk : total capacity of the k-th renewable resource.

Zi : total capacity of the i-th nonrenewable resource.

Lower-level decision variables

xjtm : a binary variable, equals 1 if activity j is completed by mode m at time period

t; and 0 otherwise.

skp : the amount of the k-th renewable resource dedicated to project p.

cip : the amount of the i-th nonrenewable resource dedicated to project p.
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Lower-level parameters

γk : monetary conversion factor of resources k.

Ej : earliest finish time of activity j.

Lj : latest finish time of activity j.

Rkt : capacity of renewable resource k at time period t.

rjkm : usage (consumption) of renewable resource k by activity j, operating on mode

m.

Wi : capacity of nonrenewable resource i.

wjim : usage (consumption) of nonrenewable resource i by activity j, operating on

mode m.

djm : duration of activity j by mode m.

N : total number of activities in the project.

Mj : total number of resource modes for activity j.

K : total number of renewable resources.

I : total number of nonrenewable resources.

H : planning horizon.

P : the set of all pairs of activities with precedence relationships; (a, b) ∈ P indi-

cates that activity a precedes activity b.

Minimize
V∑

p=1

νp(δp −Dp)
+ (3.1)

Subject to: :

V∑

p=1

skp ≤ Yk, k = 1, . . . ,K (3.2)

V∑

p=1

cip ≤ Zi, i = 1, . . . , I (3.3)

δp ≥ 0 are integers,

where skp and cip solve the p-th lower-level MRCPSP:

Minimize
K∑

k=1

γkskp +
I∑

i=1

γicip (3.4)

Subject to: :

Mj∑

m=1

Lj∑

t=Ej

xjtm = 1, j = 1, . . . , N (3.5)

−

Ma∑

m=1

La∑

t=Ea

txatm +

Mb∑

m=1

Lb∑

t=Eb

(t− dbm)xblm ≥ 0, for all (a, b) ∈ P (3.6)
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R0
kt =

N∑

j=1

Mj∑

m=1

t+djm−1∑

q=t

rjkmxjqm, k = 1, . . . ,K, t = 1, . . . ,H (3.7)

skp ≥ R0
kt, k = 1, . . . ,K, t = 1, . . . ,H (3.8)

cip =
N∑

j=1

Mj∑

m=1

Lj∑

t=Ej

wjimxjim, i = 1, . . . , I (3.9)

MN∑

m=1

LN∑

t=EN

txNtm ≤ δp (3.10)

xjtm ∈ {0, 1}, ∀ j, t,m

skp, cip ≥ 0 are integers,

In the above BLDP formulation, the objective of the upper-level manager is to

minimize the weighted total tardiness of all projects, i.e., objective function (3.1). The

decision of the upper-level is to determine the due date δp for each project, which becomes

the constraint for the project manager, i.e., constraint (3.10), to determine his optimum

resource demand as described by the lower-level model. The objective function (3.4)

expresses such resource usage decisions skp and cip to minimize the total monetary value

of required resources. Constraint (3.5) ensures that each job is completed once by using

one of the possible modes. Constraint (3.6) maintains the precedence relations between

activities. The usage of a renewable resource may vary for different time periods; and

the maximum amount among all periods is the required amount by the project, which

is expressed by constraints (3.7) and (3.8), where R0
kt is the amount of resource k used

in time t by project p. Constraint (3.9) is the usage of non-renewable resources. The

total usages of resources of all projects must not exceed the capacity as expressed by

constraints (3.2) and (3.3).

In this BLDP formulation, the interaction between the upper-level and the lower-

level becomes the adjustment of due dates by the upper-level manager and the resource

demands by project managers. This BLDP formulation for the MRCMPSP not only

enforces the interaction between the upper-level and the lower-level managers, but also

alleviates the difficulty of the upper-level manager in making the resource allocation

decision.

4. Solution Procedure

The bi-level programming problem is usually solved by transforming the original

problem into a regular single-objective problem by replacing the lower-level problems

with their Karush-Kuhn-Tucker (KKT) optimality conditions. Such a transformation

generally loses the interactive and distributed natures of the original problem, since the

KKT optimality conditions for the lower-level problems restrict the upper-level’s opti-

mization search [33]. The transformation also merges the decentralized decisions to a
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single and large problem that makes the problem even more difficult to solve, consider-

ing each of the embedded MRCPSP is already NP-hard. In the present study, instead

of employing the KKT transformation approach to solve BLDP, a bidding structure

suggested by Cheng [17] is adopted. The solution structure of Cheng [17] solves the

upper-level problem and each lower-level problem separately. The resulting lower-level

solutions are treated as bids and submitted to the upper-level manager. The upper-level

manager then determines the winning bids by solving an auction problem. This study

adopts the same concept and proposes an algorithm based on the combinatorial auction

mechanism to solve our multi-project scheduling problem. The proposed auction-based

algorithm facilitate the interactions between two levels. Unlike the KKT transformation

favoring the lower-level decision and restricting the upper-level optimality, the proposed

algorithm allows the two levels to optimize their respective decisions during the inter-

active process. Our algorithm decomposes the lower-level problem to many individual

sub-problems, which can be solved by an available solver for their small problem sizes.

This decomposition enables the integration of heuristics and exact methods, and hence

provides an efficient way to solve the BLDP.

4.1. Resource allocation by combinatorial auction

The mode to accomplish an activity is a combination of resources, and thus the

resources required to complete a project is also a combination of the amounts of a set of

resources. The ignorance of such a combinatorial nature of the MRCPSP would result in

difficulties in searching desirable resource allocations to individual projects. To resolve

this difficulty, the present study suggests using the combinatorial auction mechanism to

determine resource allocation.

The winner determination problem in combinatorial auctions is an NP-complete

problem (see Sandholm [45]), and thus the feasibility of applying combinatorial auctions

to real-world problems had been debated (see McMillian [37]). To reduce the computa-

tional complexity of combinatorial auctions, Rothkopf et al. [44] and Park and Rothkopf

[40] suggested limiting the number of bid combinations with some restriction strategies

to make the winner determination problem computationally manageable. In 2008, the

Federal Communications Commission (FCC) of USA formally adopted a combinatorial

auction to sell the 700-MHz radio spectrum rights by utilizing the bid combination re-

duction approach of Rothkopf et al. [44] to constrain the number of bids, and obtained

$19 billion revenue for the American government. Epstein et al. [23] also successfully

implemented combinatorial auctions to help the Chile government improve the quality

of school meal catering contract assignment. Their solution resulted in savings of around

$40 million per year. Cheng et al. [18] also suggested a combinatorial auction mechanism

to solve a television advertising time slot allocation problem.

When applying the combinatorial auction to BLDP, the upper-level manager acts as

the auctioneer, while lower-level project managers are bidders. The lower-level decision

is to find a set of preferred resource combinations as bids for submission to the upper-

level manager by solving a bid formulation problem, while the upper-level decision is
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to determine resource allocation to projects by solving a winner determination problem

according to the bids submitted by all project managers.

4.1.1. Bid formulation problem

In general, a mode that can accomplish the activity faster demands more resources.

The set of optimum resource combinations are treated as bids submitted to the upper-

level manager, where the completion time associated with each resource combination is

considered as a bid price.

Assuming the maximum tolerable delay of a project by the upper-level manager is

T , the upper-level manager can assign any due date that is within the tolerable tardiness

to a project to explore resource usage combinations that are feasible to the capacity

constraints. If an assigned due date is unable to render feasible resource usages, the

upper-level manager would extend the due date with the expectation to find feasible

solutions. In the proposed algorithm, project managers solve their MRCPSPs to find

ideal resource usage plans and bid to the upper-level manager, while the upper-level

manager gradually extends the due date by one time period if necessary. When the

due date is extended, the bids generated in the previously assigned due dates together

with the newly generated bid are submitted to the upper-level manager. When project

managers solve the MRCPSP to find the ideal resource usage plans, not only the optimum

solution but also a few inferior solutions to the optimum are obtained as well. The

purpose is to increase the chance of satisfying the capacity constraints.

The number of solutions to explore is a choice of the upper-level manager. Solutions

inferior to the optimum can be explored by solving the following MRCPSP.

MRCPSP-r:

Minimize f(r) = (3.4)

Subject to: (3.5)-(3.10), xjtm ∈ {0, 1}, ∀ j, t,m, skp, cip ≥ 0 are integers

f(r) > f∗(r − 1) (4.1)

where f∗(r − 1) is the optimum objective obtained previously in solving the above MR-

CPSP the (r − 1)-th times.

Table 3 presents the bid contents associated with different levels of tardiness of

project p as discussed above. Let B∗
pτ (r) = [s∗1pτ , . . . , s

∗

Kpτ
(r), c∗1pτ , . . . , c

∗

Kpτ
(r)] denote

the r-th order optimum solutions under τ tardiness, where s∗kpτ (r) and c∗ipτ (r) are the

corresponding optimum resource usages, and let δ∗pτ be the associated completion time

when the tardiness is τ , i.e., δ∗pτ = Dp + τ , τ = 0, . . . , T . Each bid is associated with a

bid price; in this case, δ∗pτ is the bid price of B∗
pτ (r), ∀ r. When τ is increased, the bids

generated previously are added to the set of newly generated bids under current τ .
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Table 3: Bids of resources by project p.

Tardiness(τ) 0 1 · · · T

Bid content
(bpτ )

bp0={(B
∗

p0(r), δ
∗

p0), ∀r} bp1={(B
∗

p1(r), δ
∗

p1), ∀ r}∪b0 · · · bpT={(B
∗

pT (r), δ
∗

pT ), ∀ r}∪bT−1

4.1.2. Winner determination problem

Lower-level project managers submit their bids under the current due dates assigned

by the upper-level manager (or equivalently the tolerable tardiness notified by the upper-

level manager). The upper-level manager then determines the winning bids according

to all these submitted bids under the satisfaction of capacity constraints, in which each

project is granted one and exactly one bid. Let ypτr denote the 0-1 decision variable

that equals 1 if bid (B∗
pτ (r), δ

∗
pτ ) is selected; and 0, otherwise. The upper-level winner

determination problem is reformulated as:

Minimize

V∑

p=1

T∑

τ=0

L∑

r=1

νp(δ
∗

pt −Dp)ypbr

+ϕ
( K∑

k=1

V∑

p=1

T∑

τ=0

L∑

r=1

γks
∗

kpτ (r)ypτr +
I∑

i=1

V∑

p=1

T∑

τ=0

L∑

r=1

γic
∗

ipτ (r)ypτr

)
(4.2)

Subject to:

T∑

τ=1

L∑

r=0

ypτr = 1, p = 1, . . . , V (4.3)

V∑

p=1

T∑

τ=0

L∑

r=1

s∗kpτ(r)ypτr ≤ Yk, k = 1, . . . ,K (4.4)

V∑

p=1

T∑

τ=0

L∑

r=1

c∗ipτ (r)ypτr ≤ Zi, i = 1, . . . , I (4.5)

ypτr ∈ {0, 1}, ∀ p, τ, r

where L is the repetition length of solving the MRCPSP. The second term in the objective

function is added to exclude solutions that result in the same weighted total tardiness

but use more resources, where ϕ is a very small constant to avoid the resource costs from

dominating the objective function.

4.2. Fuzzy combinatorial auction

It is possible that the upper-level manager is unable to find a feasible set of winning

bids even after the due dates of projects have been extended or when the manager

is not satisfied with the resulting project completion times. Such a case implies the

demand of additional resources to render feasible project schedules. Besikei et al. [11]
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also pointed out the need of budget consideration for resource investment to expand the

overall resource capacities. To enable the decision of capacity expansion, fuzzy capacities

are considered in the formulation to allow the evaluation of possible capacity expansions;

i.e., constraints (4.4) and (4.5) are replaced with:

V∑

p=1

T∑

τ=0

L∑

r=1

s∗kpτ (r)ypτr ≤ Ỹk, k = 1, . . . ,K (4.6)

and
V∑

p=1

T∑

τ=0

L∑

r=1

c∗ipτ (r)ypτr ≤ Z̃i, i = 1, . . . , I (4.7)

respectively, where Ỹk and Z̃i are fuzzy capacities of the renewable and nonrenewable re-
sources defined by fuzzy sets and are characterized by the membership functions depicted

in Figure 1(a) and (b) respectively.

Figure 1: Membership functions of (a) renewable resource, (b) nonrenewable resource, and (c)
tardiness.

In the membership function of Figure 1(a), when the usage of resource is less than Y 0
k ,

the upper-level DM has perfect satisfaction; this point is usually the current capacity. On

the other hand, Y ′

k indicates the maximum tolerable usage of the resource, which can be

determined based on the available budget. Figure 1(b) describes the membership function

of the nonrenewable resource in the same manner. The construction of the membership

functions in Figure 1 is based on the decision-maker’s experience and judgment.

The fuzzy combinatorial auction problem can be solved by the fuzzy approach of

Werners [62]. The approach of Werners [62] is adopted to model the fuzzy capacity,

which can be interpreted as the tradeoff between resource expansion and the cost. First,
by the definition of the membership function in Figure 1(a), fuzzy constraint (4.6) can

be rewritten as

V∑

p=1

T∑

τ=0

L∑

r=1

s∗kpτ(r)ypτr ≤ Y 0
k + (1− µk)(Y

′

k − Y 0
k ), k = 1, . . . ,K (4.8)

where µk is a membership value for indicating the degree of satisfaction of the upper-level

manager regarding the expansion of resource k and µk ∈ [0, 1]. The right-hand side of
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the above constraint expresses that the increment of resource will reduce the degree of

satisfaction. Similarly, according to the membership function in Figure 1(b), the fuzzy

constraint (4.7) can be converted to

V∑

p=1

T∑

τ=0

L∑

r=1

c∗ipτ (r)ypτr ≤ Z0
i + (1− νi)(Z

′

i − Z0
i ), i = 1, . . . , I (4.9)

with νi as the membership value to indicate the degree of satisfaction regarding the

expansion of resource i and νi ∈ [0, 1]. The fuzzy optimization approach of Werners

[61] is developed from the max-min fuzzy decision concept of Bellman and Zadeh [9].

Bellman and Zadeh [9] proposed that a fuzzy decision can be defined as a fuzzy set

of alternatives resulting from the intersection of the objective and the constraints. The

intersection of objective and constraints is obtained through the minimum operator. The

optimum fuzzy decision is then obtained by maximizing the intersection of objective and

constraints. This concept is referred to as a max-min approach. As a result, the fuzzy

combinatorial auction problem can be rewritten as:

Minimize α− ϕ
( K∑

k=1

V∑

p=1

T∑

τ=0

L∑

r=1

γks
∗

kpτ(r)ypτr +

I∑

i=1

V∑

p=1

T∑

τ=0

L∑

r=1

γic
∗

ipτ (r)ypτr

)
(4.10)

Subject to: (4.3), (4.8), (4.9)

t̄ =

V∑
p=1

T∑
τ=0

L∑
r=1

νp(δ
∗
pτ −D + p)ypτr

V∑
p=1

νp

(4.11)

t̄ ≤ (1− γ)T (4.12)

α = min
∀ k,i
{µk, νi, γ} (4.13)

ypτr ∈ {0, 1}, ∀ p, τ, r

Constraint (4.11) converts the weighted total tardiness into a weighted average tar-

diness; thus, the manager can express the preference in accordance with the membership

function in Figure 1(c). Constraint (4.12) defines the satisfaction regarding the weighted

tardiness according to the membership function in Figure 1(c), where the satisfaction

(i.e. membership value γ) being 100% when the tardiness is 0 and the satisfaction reaches

0% when the tardiness exceeds the maximum tolerable delay T . Though the resource

expansion explored by the above fuzzy combinatorial auction does not consider the over-

all resource budget explicitly, it provides additional information for the decision-maker

to examine the possibility of performance improvement with a reasonable amount of

resource expansion.

4.3. Algorithm

The flowchart of the solution procedure discussed above is depicted in Figure 2, and

the detailed steps of the solution procedure are described in the algorithm below.
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Figure 2: Flowchart of solution procedure.

Algorithm:

Step 0. Parameter settings of T, L, and the membership functions in Figure 1.

Initialize τ = 0
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Step 1. For project p = 1 to V

For r = 1 to L

Solve MRCPSP: min{(3.4): (3.5)-(3.10) and (4.1), xjtm ∈ {0, 1}, ∀ j, t,m,

skp, cip ≥ 0 are integers}.

Next r

Submit bid set bpτ to the upper-level manager.

Next p

Step 2. Solve regular CA: min{(4.2): (4.3)-(4.5), ypτr ∈ {0, 1}, ∀ p, τ , r}.

If feasible, go to Step 4; otherwise go to Step 3.

Step 3. τ ← τ + 1 (increase the due date by one unit each time)

If τ > T , go to Step 5; otherwise, go to Step 1.

Step 4. If project completion times are satisfactory, go to Step 6; otherwise, go to Step

5.

Step 5. Solve the fuzzy CA:

max{(4.10): (4.3), (4.8), (4.9), (4.11)-(4.13), ypτr ∈ {0, 1}, ∀ p, τ, r}.

Obtain the resource expansion plan.

Step 6. Stop.

The parameters T and L set in the beginning of the algorithm together limit the

maximum number of bids by a projector manager to be L × T . With V projects in

total, the upper-level manager solves a combinatorial auction problem with only L ×

T × V bids in maximum. Such a mechanism permits the computation complexity of the

combinatorial auction problem to grow moderately.

5. Computational Results

Beşikci et al. [11] created a set of problem instances of MRCMPSP based on the

problem sets of Kolisch and Sprecher [31]. Problem instances are grouped according

to their network complexity and maximum utilization factor. Network complexity is

defined as the total number of arcs divided by the total number of nodes in the project

network. Maximum utilization factor is the ratio defined as the resource requirement of

no-delay schedule over the available capacity. When the ratio is less than or equal to 1,

the project can be completed without delay. This study uses the problem instances of

Beşikci et al. [11] and a benchmark problem dataset to evaluate the performance of the

proposed approach.

5.1 Comparison with the approach of Beşikci et al. [11]

Two levels of network complexity, i.e., 1.4 and 1.8, and three levels of maximum uti-

lization factor, i.e., 1.2, 1.4, and 1.5, are selected to construct a full factorial design with

10 problems in each combination. Each problem group comprises 10 problem instances,

and each problem instance contains 6 projects with weights from 1 to 6, respectively;
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each project consists of 22 or 32 activities with two renewable resources and two non-

renewable resources. The due dates of projects are set following the approach of Beşikci

et al. [11]. The due date of a project with the highest weight, i.e., 6, is set as its no-delay

completion time without considering capacity constraints. As the weight decreases, the

project is assigned a tighter due date as shown in Table 4. As can be seen, the minimum

weighted tardiness possible for a problem instance is 35 according to the objective func-

tion (4.2). In the experiments, the maximum allowable tardiness T is set to be 10, and

the repetition times (L) of solving the MRCPSP under each tardiness level is set to be

5. The monetary conversion factors γi, ∀ i, are all set to be 1.

Table 4: Due dates assigned to projects with different weights.

Project Weight Due date Tardiness

1 6 (No delay) 0

2 5 (No delay) - 1 1

3 4 (No delay) - 2 2

4 3 (No delay) - 3 3

5 2 (No delay) - 4 4

6 1 (No delay) - 5 5

The proposed solution procedure is programmed by JAVA with CPLEX library

and is run on an Intel Core i5, 1.4Ghz processor with 4GB memory. Computational

results are presented in Tables 5 and 6 and are compared with the results obtained by

Beşikci et al. [11] which used an Intel Xeon X5492, 3.40 Ghz processor. AWT in the

tables denotes the average weighted total tardiness and ART is the average run time (in

minutes) for a problem instance, with “std” in the parentheses indicating their standard

deviations. Beşikci et al. [11] compared the performances of four methods in their study,

namely GA with Lagrangian relaxation (GA-LA), GA with linear relaxation, subgradient

optimization, and exact method. Since the GA-LA outperformed the other three methods

as reported by Beşikci et al. [11], this study compares the proposed algorithm with the

GA-LA only.

In the problem group NC1.4-MUF1.2 (Table 5), 8 out of the 10 problem instances

obtain the optima (i.e., weighted total tardiness = 35.0), and two instances close to the

optimum (36 and 37 respectively), resulting in an AWT=35.3. This result is slightly

inferior to those obtained by Beşikci et al. [11]; nevertheless, with a few expansion of

the resources (3 units on average), the fuzzy combinatorial auction can obtain optima

for all instances. The computation time of the fuzzy CA is negligible (usually a couple of

seconds) and thus is not reported in the tables. The column Extra resource indicates the

amount of additional resources needed to expand on the current capacities. For example,

the average amount of resources needed to expand for the group NC1.4-MUF1.5 is 54.7, in

which the resource requirements of the first problem instance in this group are presented

in Table 7. In the example of Table 7, the resource usages suggested by the fuzzy CA
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for the renewable resources and the first non-renewable resource do not exceed their
current capacities but improve the utilization of these resources; while the second non-
renewable resource is suggested to expand by 50 units and is counted as the amount of
extra resource demand for this case. Such results also provide the information about the
insufficiency or abundance of a resource for the manager to adjust resource capacities.

Table 5: Comparison of results for problem instances containing 6 projects with 22 activities.

Regular
combinatorial

Problem Beşikci et al. [11] auction Fuzzy combinatorial auction
group

AWT ART
AWT ART AWT

(NC-MUF) (std) (std) α (std) Extra resource
1.4-1.2 35.0 6.19 35.3 2.13 0.83 35.0 3.0

(0.6) (0.66) (0.0)
1.4-1.4 42.6 94.40 71.0 2.05 0.78 45.4 31.8

(39.1) (0.53) (9.0)
1.4-1.5 52.9 117.29 125.6 5.18 0.68 53.7 60.5

(68.3) (4.5) (22.0)
1.8-1.2 35.0 3.38 35.3 2.06 0.83 35.0 3.0

(0.6) (0.58) (0.0)
1.8-1.4 41.4 98.99 71.5 2.05 0.78 45.4 31.8

(39.1) (0.54) (9.0)
1.8-1.5 50.6 120.00 108.5 2.40 0.73 56.5 52.3

(52.8) (0.95) (17.3)

Table 6: Comparison of results for problem instances containing 6 projects with 32 activities.

Regular
combinatorial

Problem Beşikci et al. [11] auction Fuzzy combinatorial auction
group

AWT ART
AWT ART AWT

(NC-MUF) (std) (std) α (std) Extra resource
1.4-1.2 35.0 14.81 35.3 11.24 0.83 35.0 11.0

(0.9) (8.43) (0.0)
1.4-1.4 56.0 74.07 57.6 10.72 0.79 43.1 27.6

(23.6) (8.22) (8.1)
1.4-1.5 181.0 110.08 100.6 22.94 0.70 48.6 58.3

(51.9) (17.46) (13.6)
1.8-1.2 35.0 8.73 35.3 10.78 0.83 35.0 11.0

(0.9) (8.63) (0.0)
1.8-1.4 82.2 88.45 57.6 13.84 0.79 43.1 27.6

(23.6) (10.75) (8.1)
1.8-1.5 148.0 110.15 100.9 9.85 0.75 52.4 48.5

(44.9) (7.42) (14.9)

As for the remainder problem groups in Table 5, the solutions found in this study
are all inferior to those obtained by Beşikci et al. [11]; however, the computation times
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by our approach are much less than that by Beşikci et al. [11], and by further solving

these problems with the fuzzy combinatorial auction, AWTs obtained by our regular

CA are improved and approximate the solutions of Beşikci et al. [11]. A pairwise t-

test on the AWTs in Table 5 between Beşikci et al. [11] and our regular combinatorial

auction indicates that the approach of Beşikci et al. [11] is superior (with t = −2.62

and p = 0.02). When comparing between Beşikci et al. [11] and our fuzzy combinatorial

auction, the difference is not significant (with t = −2.29 and p = 0.07).

Table 7: Resource demands solved by regular and fuzzy CAs (the first problem instance of group
NC1.4-MUF1.5).

Resource usages by Resource usages by Extra resources
Resource Capacity (A) regular CA (B) fuzzy CA (C) (C-A)

Renewable
1 118 104 116 -2

2 135 131 128 -7

Non-renewable
1 456 407 434 -22

2 530 529 580 50

Table 6 presents the computational results of problem groups with projects consisting

of 32 activities. Except problem groups NC1.4-MUF1.2, NC1.4-MUF1.4, and NC1.8-

MUF1.2, which are slightly inferior to the solutions by Beşikci et al. [11], the proposed

algorithm outperforms on the remainder problem groups. Although the pairwise t-test

does not evidence a significant difference on the AWT (with with t = 1.84 and p = 0.06),

our algorithm dominates all problem groups on the computation time. Furthermore, by

employing the fuzzy CA to solve the problems, AWTs are significantly improved and

outperform those by Beşikci et al. [11] (with t = 2.07 and p = 0.047).

According to the computational results presented in Tables 5 and 6, it seems the

proposed algorithm tends to perform better on harder problems. Problems with MUF

values closer to 1 are regarded as relatively easy problems whereas problems with higher

MUF values are harder ones (see Beşikci et al. [11]). The algorithm of Beşikci et al. [11]

performed well on problems with lower dimension (i.e., 22 activities) and especially on

problem groups whose problem structures commonly have MUF values equal to 1.2.

However, for problems with higher dimension, i.e., problem instances with 32 activities,

the proposed algorithm has better performance in general.

5.2. Performance evaluation based on a benchmark dataset

To evaluate the performance of our proposed approach on larger project networks,

experiments on multiple projects with 52 activities for each project are also conducted.

Problem instances are constructed based on the MMLIB dataset1 by Van Peteghem and

Vanhoucke [58], which was originally designed for single project MRCPSP. Five problem

instances are tested, where each problem instance contains five projects, and each project

1MMLIB dataset can be downloaded at http://mmlib.eu/download.php.
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Table 8: Description of problem instances containing 5 projects with 52 activities.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Weights

J502 1.mm J503 1.mm J504 1.mm J505 1.mm J506 1.mm
5

(4.08) (4.19) (4.12) (4.63) (3.90)
J502 2.mm J503 2.mm J504 2.mm J505 2.mm J506 2.mm

4
Project ID (4.67) (3.96) (4.62) (4.15) (4.27)
in MMLIB J502 3.mm J503 3.mm J504 3.mm J505 3.mm J506 3.mm

3
(4.37) (4.15) (4.31) (4.40) (4.52)

(network J502 4.mm J503 4.mm J504 4.mm J505 4.mm J506 4.mm
2

complexity) (3.94) (4.00) (4.00) (4.87) (3.65)
J502 5.mm J503 5.mm J504 5.mm J505 5.mm J506 5.mm

1
(4.75) (4.38) (4.31) (4.23) (3.98)

Due date 23 18 19 17 20
R1: 153 R1: 151 R1: 146 R1: 144 R1: 148

Resource R2: 147 R2: 138 R2: 149 R2: 137 R2: 142
capacity N1: 1192 N1: 665 N1: 1258 N1: 939 N1: 1461

N2: 1244 N2: 686 N2: 1382 N2: 1038 N2: 1442

R1: renewable resource 1; R2: renewable resource 2; N1: non-renewable resource 1; N2: non-

renewable resource 2

Table 9: Computational results for problem instances containing 5 projects with 52 activities.

Problem Instance Proposed approach Lower bound
AWT Run-Time AWT

1 126 6.30 27

2 74 6.03 23

3 113 3.45 14

4 66 8.33 32

5 172 3.98 21

has 52 activities and each activity uses three resource modes (except the source and the

sink) with two renewable and two non-renewable resources. Descriptions of these problem

instances are summarized in Table 8. The original IDs of the projects (in MMLIB)

contained in each problem instance are given. The weights of projects are from 5 to 1 in

each problem instance. The due date of each problem instance is determined based on the

benchmark2 provided by Van Peteghem and Vanhoucke [58] while solving the MRCPSP.

The minimum of the completion times obtained by Van Peteghem and Vanhoucke [58]

among each problem group (instance) is used as the due date of that problem instance.

The resource capacity of each problem instance is formulated by taking the summation

of the original resource capacities of all projects inside the problem. This experiment

is run on a computer with Intel Core i5, 2.20Ghz processor and 12GB memory. The

2The benchmark can be found at http://mmlib.eu/solutions.php.
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computational results are presented in Table 9, where the lower bound of each problem

instance is computed based on the completion times of individual projects obtains by Van

Peteghem and Vanhoucke [58]. It must be noted that such lower-bounds may be much

lower than the true optima. The results in Table 9 show our approach performs well

in terms of computational time for even larger problems, in which, the solution quality

obtained for Problems 2 and 4 are better than the rest problems for their completion

times are closer to their lower bounds.

6. Concluding Remarks

This study considers a multi-mode resource-constrained multi-project scheduling

problem where resource sharing among projects is not allowed. The problem is modeled

as a bi-level decentralized programming problem which contains an upper-level problem

for due date assignment decision and a set of lower-level problems for individual project

scheduling. The problem is solved using a regular combinatorial auction mechanism and

a fuzzy combinatorial auction mechanism. The regular combinatorial auction is employed

when only current resource capacities are considered, while the fuzzy combinatorial auc-

tion takes possible expansion of resources into account.

For performance evaluation, the problem instances created by Beşikci et al. [11] are

adopted. Computational results show that the proposed algorithm outperforms the ap-

proach of Beşikci et al. [11] on problem instances with greater complexity in terms of both

solution quality and computation time. The fuzzy combinatorial auction mechanism also

provides information about the insufficiency or abundance of a resource for the manager

to adjust resource capacities. To evaluate the performance of our proposed approach

on larger project networks, experiments on multiple projects with 52 activities for each

project are further conducted. Computational results show our approach performs well

in terms of computational time for even larger problems.

Current studies of resource-constrained multi-project scheduling generally consider

either full-shareable or non-shareable resources. However, there are cases that involve

both situations. For example, the tower crane in construction projects is generally a non-

shareable resource, but workers are easily to move and dynamically distribute between

two construction sites and thus can be treated as a shareable resource. In our future

study, the scheduling of resource-constrained multi-projects with both shareable and

non-shareable resources will be investigated.
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